《中药与临床
》
2023
摘要:目的:对来自全国13个省市共171个杜仲茎和叶样本进行光谱分析,结合深度学习建立不同产地判别模型,为其资源合理开发利用提供依据。方法:以13个产地的杜仲茎和叶为实验材料,分别检测其近红外光谱,结合二维光谱算法和残差卷积神经网络建立模式识别模型。结果:基于同步二维相关光谱的模型在卷积层数为26层及以上时均取得了100%的分类正确率,而基于异步二维相关光谱的模型预测集正确率低于30%。结论:表明该模型能够应用于不同产地杜仲药材的鉴别。
关键词:
杜仲
二维相关光谱
深度学习
判别模型