科研产出
FTIR结合化学计量学对三七地下部位鉴别及皂苷含量预测
《光谱学与光谱分析 》 2019 EI SCI 北大核心 CSCD
摘要:当今中药市场上掺假现象屡见不鲜,不良商贩利用三七须根粉末假冒主根和剪口粉末,严重影响三七的质量与药效。通过傅里叶变换红外光谱(FTIR)结合化学计量学建立三七主根、剪口和须根粉末鉴别及四种皂苷含量快速预测模型,为快速三七质量控制提供基础。采集三七主根、剪口和须根红外光谱,超高效液相色谱(UPLC)测量样品中三七皂苷R1、人参皂苷Rg1、人参皂苷Rb1和人参皂苷Rd含量。采用纵坐标归一化及二阶导数对原始红外光谱进行预处理;Kennard-stone算法将60个样本分为2/3训练集与1/3预测集。训练集数据结合支持向量机(SVM)判别建立三七主根、剪口和须根粉末鉴别模型,最佳核函数c和g采用交叉验证进行网格式搜索,预测集数据用于对判别模型进行外部验证。正交信号校正偏最小二乘回归(OSC-PLSR)建立三七中四种皂苷含量预测模型,红外光谱采用一阶、二阶导数及Savitsky-Golay平滑5点、7点、9点、11点预处理。60个样本分为2/3训练集与1/3预测集,训练集数据建立OSC-PLSR模型,预测集数据对OSC-PLSR模型的预测结果进行外部验证。结果显示:(1)二阶导数可有效的分离原始谱图的叠合隐蔽谱峰,并提高谱图的分辨率;(2)交叉验证网格式搜索计算出最佳核函数c=2.828 43,g=4.882 81×10~(-4),此时训练集判别正确率为100%;(3)SVM判别模型核函数设置为最佳核函数,预测集数据外部验证正确率为100%,所有样本均被正确鉴别;(4)三七皂苷R1、人参皂苷Rg1、人参皂苷Rb1和人参皂苷Rd最优含量预测模型预测值与UPLC检测值接近,预测效果良好。FTIR结合SVM判别能对三七主根、剪口和须根粉末快速鉴别,结合OSC-PLSR能对四种皂苷含量进行准确预测。该方法准确可靠,可为中药材三七提供快速有效的质量控制。
关键词: 傅里叶变换红外光谱 三七 地下部位鉴别 皂苷含量预测 化学计量学
FTIR结合化学计量学对三七产地鉴别及皂苷含量预测研究
《光谱学与光谱分析 》 2017 EI SCI 北大核心 CSCD
摘要:不同产地对中药次生代谢产物有显著影响,产地鉴别有助于中药的科学合理利用;其次,有效成分含量检测是评价中药质量的主要手段。通过傅里叶变换红外光谱结合化学计量学建立快速鉴别三七产地及测定三七中四种主要皂苷的方法,为三七的科学、合理、规范使用以及对三七质量进行快速评价提供依据。采集5个区域12个产地117个三七样本的红外光谱。产地鉴别预处理数据采用离散小波变换除去噪音造成的部分高频信号,偏最小二乘判别对产地判别贡献率大于1的数据进行筛选,kennard-stone算法将117个个体分为70%训练集与30%预测集。训练集数据用于建立支持向量机判别模型,交叉验证法用于筛选支持向量机最优参数,预测集数据对支持向量机判别模型结果进行验证。皂苷含量预测预处理数据采用标准正态变量变换、离散小波变换处理;处理的红外数据设为X变量,三七样品中通过高效液相色谱法测得的四种皂苷总量设为Y变量,采用正交信号校正去除红外光谱中与四种皂苷总量无关的干扰数据。个体数据分为80%训练集与20%预测集,训练集建立偏最小二乘回归模型,预测集数据对偏最小二乘回归模型的预测结果进行验证。结果显示:(1)交叉验证法得到支持向量机判别模型的最优参数为c=2.828 43,g=0.0625,训练集的产地判别最优正确率为91.463 4%;(2)支持向量机判别模型参数设置为最优参数,代入预测集数据,预测集的产地判别正确率为94.285 7%,判别正确率较高;(3)训练集建立偏最小二乘回归模型的相关系数R2=0.941 8,校正均方差RMSEE=4.530 7;(4)代入预测集数据,预测集的相关系数R2=0.962 3,外部检验均方差RMSEP=3.855 9,皂苷预测值与高效液相检测值接近,预测效果良好。傅里叶变换红外光谱结合支持向量机能对三七进行产地鉴别,正交信号校正结合偏最小二乘回归能对三七中四种主要皂苷总量进行准确预测,为三七质量控制提供一种快速简便、无损、高灵敏度的检测方法。
首页上一页1下一页尾页