科研产出
基于主成分分析和聚类分析的不同产地绒柄牛肝菌红外光谱鉴别研究
《光谱学与光谱分析 》 2016 EI SCI 北大核心 CSCD
摘要:采用傅里叶变换红外光谱结合主成分分析和聚类分析建立快速鉴别不同产地绒柄牛肝菌的方法。采集15个产地绒柄牛肝菌样品的红外光谱信息,用多元散射校正(multiplicative signal correction,MSC)、二阶求导(Second derivative,SD)、Norris平滑的组合方法对原始光谱进行优化处理,MSC+SD+ND(15,5)预处理后的光谱数据进行主成分分析和聚类分析,并通过主成分载荷图分析不同产地绒柄牛肝菌样品差异的原因。结果显示,该方法的重现性,精密度及稳定性的RSD值分别为0.17%,0.08%,0.27%,表明方法稳定、可靠。主成分分析的前3个主成分累积贡献率达到87.24%,能表达红外光谱的主要信息,主成分得分散点图中同一产地样品成簇聚集,不同产地样品分布于相对独立的空间,能有效区分不同产地样品。主成分载荷图显示,随主成分贡献率降低,主成分所捕获的样品信息减少,其中PC1在3 571,2 958,1 625,1 456,1 405,1 340,1 191,1 143,1 084,935,840,727cm~(-1)波数捕获大量样品信息,归属为糖类、蛋白质、氨基酸、脂肪、纤维素等化学物质的吸收峰,表明这些化学物质含量的差异是区分不同产地绒柄牛肝菌样品的主要依据。基于离差平方和法(Ward method)及欧氏距离(Euclidean distance)进行聚类分析,能直观显示不同产地样品的分类情况及样品之间的相关性,15个产地样品基本能够按照产地来源正确聚类,正确率为93.33%。傅里叶变换红外光谱结合主成分分析和聚类分析,可以有效鉴别绒柄牛肝菌产地来源,并且能够分析不同产地样品具有差异的原因,为野生食用菌的鉴别分类和应用研究提供可靠依据。


红外光谱结合统计分析对不同产地玛咖的鉴别分类
《食品科学 》 2016 北大核心 CSCD
摘要:采用傅里叶变换红外光谱法,对采自云南及秘鲁共139份玛咖样品进行产地鉴别研究。采用多元散射校正结合二阶导数和Norris平滑预处理光谱,通过剔除噪声明显的光谱波段,筛选出适宜的主成分数为8。基于最优主成分数,采用间隔偏最小二乘(interval partial least-squares,iPLS)法对3 650.59-651.82 cm~(-1)光谱进行优化分析。结果显示,筛选98份样品在1 855.19~651.822、3 054.69~2756.78 cm~(-1)和3 650.59~3 353.6 cm~(-1)光谱建立的间隔偏最小二乘判别分析(interval partial least-squares discriminant analysis,iPLS-DA)分类模型,其R~2、校正均方根误差和预测均方根误差分别为0.958 4、0.785 8和1.164 2。通过41份样品验证,验证正确率与原光谱建立的分类模型保持一致,均为87.80%。为进一步提高分类模型的精度,在iPLS筛选的光谱波段基础上,分别采用遗传算法(genetic algorithm,GA)和蛙跳算法(shuffled frog leaping algorithm,SFLA)对光谱信息进行优化,结果显示,采用GA筛选频率大于4和5的光谱信息,筛选的光谱数据点分别为62个和29个;利用SFLA筛选概率大于0.1和0.15的光谱信息,筛选的光谱数据点分别为77个和27个。验证结果显示,采用GA-PLS-DA_(62个数据点))和GA-PLS-DA_((29个数据点))建立的PLS-DA分类模型识别正确率分别为95.12%和97.56%,采用SFLA-PLS-DA_((77个数据点))和SFLA-PLS-DA_((27个数据点))建立的分类模型识别正确率分别为92.68%和97.56%。对比上述方法可知,采用iPLS-DA、GA-PLS-DA和SFLA-PLSDA建立的分类模型均具有较好的预测性能,其中GA-PLS-DA_((29个数据点))和SFLA-PLS-DA(27个数据点)建立分类模型能更准确地鉴别不同产地的玛咖。该方法的建立为玛咖红外光谱产地鉴别提供一种新的思路,所筛选的光谱变量可为不同产地玛咖内在化学成分(组分)差异性分析提供基础依据。
关键词: 玛咖 红外光谱 间隔偏最小二乘法 遗传算法 蛙跳算法


红外光谱结合化学计量学方法快速鉴别牛肝菌种类及总汞含量分析
《光谱学与光谱分析 》 2016 EI SCI 北大核心 CSCD
摘要:傅里叶变换红外光谱结合化学计量学建立快速鉴别牛肝菌种类及测定牛肝菌中总Hg含量的方法。采集15种共48份云南常见牛肝菌的红外光谱信息并用冷原子吸收光谱-直接测汞仪测定牛肝菌的总Hg含量,根据FAO/WHO规定的每周Hg允许摄入量(provisional tolerable weekly intake,PTWI)评价牛肝菌的食用安全性;采用Norris平滑、多元散射校正、二阶导数、正交信号校正-微波压缩等方法对牛肝菌的红外光谱进行优化处理,优化处理后的数据进行主成分分析、偏最小二乘判别分析建立快速鉴别牛肝菌种类及牛肝菌总Hg含量的预测模型。结果显示:(1)主成分分析的前三个主成分累积贡献率为77.1%,不同种类牛肝菌在主成分得分图中能够明显区分开,表明不同种类牛肝菌的化学组分或含量具有差异;(2)不同产地、种类牛肝菌总Hg含量差异明显,其总Hg含量在0.17~15.2mg·kg~(-1) dw之间;若成年人(60kg)每周食用300g新鲜牛肝菌则少数牛肝菌摄入的Hg超过PTWI的限量标准,食用有一定风险;(3)牛肝菌红外光谱数据与总Hg含量拟合,进行偏最小二乘判别分析,能快速区分总Hg含量低(≤1.95 mg·kg~(-1)dw)、中(2.05~3.9mg·kg~(-1) dw)、高(≥4.1mg·kg~(-1) dw)的牛肝菌样品,并且Hg含量差异越大,越易于区分;进一步建立牛肝菌总Hg含量预测模型,训练集的R2为0.911 4,RMSEE为1.09,验证集的R2和RMSEP分别为0.949 7和0.669 5,牛肝菌总Hg含量预测值与测定值比较接近,模型预测效果良好。红外光谱结合化学计量学方法能快速鉴别牛肝菌种类,区分不同总Hg含量的牛肝菌样品并对Hg含量进行准确预测,为野生牛肝菌的质量控制和食用安全评估提供快速、简便的方法。


药用植物川东獐牙菜红外光谱分析与鉴别
《光谱学与光谱分析 》 2016 EI SCI 北大核心 CSCD
摘要:采用傅里叶变换红外光谱法(Fourier transform infrared spectroscopy,FTIR)、偏最小二乘判别分析(partial least square discriminant analysis,PLS-DA)和系统聚类分析(hierarchical cluster analysis,HCA)快速鉴别不同产地川东獐牙菜(Swertia davidi Franch)。采集4个不同地区70株样品不同部位的红外光谱数据,原始光谱数据经预处理(自动基线校正,自动平滑,一阶求导,二阶求导)后导入OMNIC 8.2,比较吸收峰的差异;用SIMCA-Pa+10.0进行偏最小二乘判别分析(PLS-DA),以前三个主成分三维得分图比较产地鉴别效果;红外光谱数据导入SPSS 19.0,进行系统聚类分析(HCA),通过树状图比较不同部位分类效果。结果显示,(1)不同产地根的光谱图在1 739,1 647,1 614,1 503,1 271,1 243,1 072cm~(-1)附近的吸收峰有差异,不同产地茎的光谱图在1 503,1 270,1 246cm~(-1)吸收峰附近有差异;(2)相同产地不同部位的光谱特征峰有差异;(3)PLS-DA分析结果显示自动基线校正+自动平滑+二阶求导这种预处理方式分类效果最好,根的红外光谱数据产地鉴别效果最佳;(4)HCA的树状图,显示根的聚类分析结果正确率83%,茎的聚类分析结果正确率49%,叶的聚类分析结果正确率70%。FTIR技术结合PLS-DA与HCA方法能够快速准确地鉴别不同产地川东獐牙菜,不同部位产地鉴别效果有差异,根的光谱数据产地鉴别效果最佳,二阶求导处理增强了样品的特异性,使PLS-DA的三维主成分得分图分类效果更明显。
关键词: 红外光谱 产地鉴别 川东獐牙菜 系统聚类分析 偏最小二乘判别分析


不同年份和产地美味牛肝菌的红外光谱鉴别研究
《光谱学与光谱分析 》 2016 EI SCI 北大核心 CSCD
摘要:采用傅里叶变换红外光谱技术结合多元统计分析建立快速鉴别不同年份、不同产地美味牛肝菌的方法。采集2011年一2014年云南26个不同地区152个美味牛肝菌样品的红外光谱,使用正交信号校正(orthogonal signal correction,OSC)、微波压缩(wavelet compression)方法对原始光谱进行优化处理,OSCW校正前后的光谱数据进行偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA),比较光谱预处理前后PLS-DA的分类效果。将152个美味牛肝菌随机分为训练集(120个)和验证集(32个),建立OS--CW校正前后的PLS分类预测模型。结果显示,经OSCW处理后的PLS-DA分类效果明显优于处理前的结果,主成分得分图能准确区分不同年份、不同产地美味牛肝菌样品,表明OSCW处理能有效滤除光谱中的噪音及与因变量无关的干扰信息,提高光谱分析的准确性和计算速率。OSCW处理前PLS模型训练集的R~2和RMSEE分别为0.790 1和21.246 5,验证集的R~2和RMSEP分别为0.922 5和14.429 2;OSCW预处理后训练集的R~2和RMSEE分别为0.852 3和17.238 1,验证集的R~2和RMSEP分别为0.845 4和20.87,表明OSCW预处理提高了训练集的预测效果,但OSCW-PLS出现了过拟合现象降低验证集的预测能力,因此,OSCW不适宜与PLS结合建立模型。OSCW结合PLS-DA能滤除光谱中大量的干扰信息,准确区分不同年份、不同产地美味牛肝菌样品,为野生食用菌的鉴别分类提供可靠依据。
关键词: 红外光谱 正交信号校正-微波压缩 偏最小二乘判别分析 美味牛肝菌 鉴别


薯蓣属5种药食同源植物红外光谱鉴别研究
《食品研究与开发 》 2016 北大核心
摘要:采用傅里叶变换红外光谱(FT-IR)结合化学计量学鉴别不同种药食同源薯蓣植物。采集云南5种药食同源薯蓣属(淮山药、黄独、高山薯蓣、粘山药、参薯)样品红外光谱数据,选择基线校正、9点平滑、自动归一化、二阶导数等预处理方法对光谱进行优化。原始光谱显示,除粘山药样品,其余4种薯蓣属样品红外光谱相似度较高,在1 154、1 081、1 021、928、763、577 cm~(-1)附近均出现表征淀粉和一些糖苷类成分的吸收峰。选取1 800 cm~(-1)~400 cm~(-1)波段二阶导数光谱数据,结合聚类分析(HCA)和偏最小二乘判别分析(PLS-DA)法进一步挖掘红外光谱数据信息。通过HCA提取727个变量建立矩形阵列获得树状图,分类正确率为91.2%。PLS-DA模型前6个主成分累积贡献率为97.3%;得分图显示,5种样品分类效果理想。证明FT-IR结合HCA和PLS-DA方法,对5种不同种薯蓣植物的鉴别可行。
关键词: 薯蓣 药食同源 红外光谱 聚类分析 偏最小二乘判别分析


红外光谱结合判别分析对三七道地性及产地的鉴别研究
《光谱学与光谱分析 》 2015 EI SCI 北大核心 CSCD
摘要:利用傅里叶变换红外光谱结合判别分析对三七的道地性及产地进行鉴别研究。测试了11个县13个种植点的136株三七主根样品的红外光谱,利用Omnic8.0软件计算了每个样品红外光谱的二阶导数光谱。分别采用1 800~700cm-1光谱范围的红外光谱数据和二阶导数光谱数据,运用逐步判别分析法建立模型对三七的道地性进行判别研究,二阶导数光谱数据建立的模型对三七道地性的识别效果更好,回判正确率为100%,预测正确率为93.4%。采用交叉验证法检验了模型的稳定性,并对此方法进行了外推性验证。用二阶导数光谱数据结合相同的判别方法对三七的产地进行识别,比较了不同光谱范围和不同训练样本数建立的模型判别效果,每个种植点选择8个样本作为训练样本,采用1 500~1 200cm-1光谱范围的数据建立的模型判别效果较好,回判正确率为99.0%,预测正确率为76.5%。结果表明,红外光谱结合判别分析对三七道地性的识别效果好,有望成为实际中鉴别三七道地性的新方法;对三七产地的识别有一定的效果,可作为三七产地鉴别的一种新思路。


红外光谱结合判别分析对三七种植土壤类型的鉴别研究
《湖北农业科学 》 2015 北大核心
摘要:利用傅里叶变换红外光谱(FTIR)技术结合判别分析,对三七(Panax notoginseng)的种植土壤类型进行鉴别研究。测试了6种种植土壤类型共102株三七植株主根木质部和须根样品的红外光谱;以1 800~900 cm-1的光谱信息为变量,每种土壤类型任选5份样品为测试样本,其他为训练样本;利用SPSS 18.0统计分析软件中的判别分析模块依据Fisher线性判别准则,采用逐步判别分析中的5种挑选样本信息变量算法,建立分类模型,对三七的种植土壤类型进行鉴别研究。结果表明,基于三七须根样品信息的种植土壤类型的判别结果明显优于基于主根木质部的判别结果,且5种挑选变量的算法建立的模型都能识别三七的种植土壤类型;综合考虑判别分析结果和模型的稳定性,"Smallest F ratio"法所建立的模型更适合用于三七种植土壤类型的鉴别。
关键词: 红外光谱 逐步判别分析 三七(Panax notoginseng) 土壤类型


红外光谱结合判别分析对滇重楼生长年限的鉴别
《中国实验方剂学杂志 》 2015 北大核心 CSCD
摘要:目的:建立滇重楼生长年限的鉴别方法,为滇重楼的质量控制提供参考。方法:利用傅里叶变换红外光谱技术测试了同一产地7种不同生长年限的68株重楼主根木质部和表皮样品的红外光谱,利用Omnic8.0软件计算样品的二阶导数光谱和四阶导数光谱,分别以主根木质部和表皮在1 800~900 cm-1的红外光谱、二阶导数红外光谱和四阶导数红外光谱数据为样品特征,采用Mahalanbis距离逐步判别分析法,依据Fisher线性判别准则建立重楼生长年限的判别模型,对未知生长年限的样品进行鉴别比较。结果:四阶导数光谱比其他级别的光谱鉴别效果好,表皮光谱比木质部光谱的鉴别效果好;利用表皮的四阶导数光谱数据建立判别分析模型对重楼的生长年限进行鉴别时,训练样本回判正确率100%,测试样本预测正确率78.6%,总正确率95.6%。结论:傅里叶变换红外光谱结合逐步判别分析法可鉴别重楼的生长年限,为生产实践中预测重楼的生长年限提供了一种新思路。

