Study of the suitable climate factors and geographical origins traceability of Panax notoginseng based on correlation analysis and spectral images combined with machine learning
文献类型: 外文期刊
作者: Liu, Chunlu 1 ; Zuo, Zhitian 1 ; Xu, Furong 2 ; Wang, Yuanzhong 1 ;
作者机构: 1.Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming, Yunnan, Peoples R China
2.Yunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming, Yunnan, Peoples R China
关键词: Panax notoginseng; active components; climate factors; synchronous 2D-COS images; deep learning model; geographical traceability
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.6; 五年影响因子:6.8 )
ISSN: 1664-462X
年卷期: 2023 年 13 卷
页码:
收录情况: SCI
摘要: IntroductionThe cultivation and sale of medicinal plants are some of the main ways to meet the increased market demand for plant-based drugs. Panax notoginseng is a widely used Chinese medicinal material. The growth and accumulation of bioactive constituents mainly depend on a satisfactory growing environment. Additionally, the occurrence of market fraud means that care should be taken when purchasing. MethodsIn this study, we report the correlation between saponins and climate factors based on high performance liquid chromatography (HPLC), and evaluate the influence of climate factors on the quality of P. notoginseng. In addition, the synchronous two-dimensional correlation spectroscopy (2D-COS) images of near infrared (NIR) data combined with the deep learning model were applied to traceability of geographic origins of P. notoginseng at two different levels (district and town levels). ResultsThe results indicated that the contents of saponins in P. notoginseng are negatively related to the annual mean temperature and the temperature annual range. A lower annual mean temperature and temperature annual range are favorable for the content accumulation of saponins. Additionally, high annual precipitation and high humidity are conducive to the content accumulation of Notoginsenoside R1 (NG-R1), Ginsenosides Rg1 (G-Rg1), and Ginsenosides Rb1 (G-Rb1), while Ginsenosides Rd (G-Rd), this is not the case. Regarding geographic origins, classifications at two different levels could be successfully distinguished through synchronous 2D-COS images combined with the residual convolutional neural network (ResNet) model. The model accuracy of the training set, test set, and external validation is achieved at 100%, and the cross-entropy loss function curves are lower. This demonstrated the potential feasibility of the proposed method for P. notoginseng geographic origin traceability, even if the distance between sampling points is small. DiscussionThe findings of this study could improve the quality of P. notoginseng, provide a reference for cultivating P. notoginseng in the future and alleviate the occurrence of market fraud.
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
Rapid prediction of nucleosides content and origin traceability of Boletus bainiugan using Fourier transform near-infrared spectroscopy combined with chemometrics
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Fourier transform near-infrared spectroscopy; Nucleoside compounds; Climatic factors; Two-dimensional correlation spectroscopy; Residual neural networks
-
Predicting the suitable habitat distribution of Polygonatum kingianum under current and future climate scenarios in southwestern Yunnan, China
作者:Hu, Xiaoyan;Yang, Shaobing;Li, Zhimin;Wang, Yuanzhong;Hu, Xiaoyan
关键词:Polygonatum kingianum; Maximum entropy model; Species distribution; Suitable habitat; Geographical traceability
-
Geographical origin identification of Dendrobium Officinale based on FT-NIR and ATR-FTIR spectroscopy
作者:Han, Jiaqi;Hu, Qiang;Wang, Yuanzhong
关键词:Spectral analysis; Data fusion; Two-dimensional correlation spectroscopy; The residual convolutional neural network; Dendrobium officinale Kimura & Migo
-
Classification of bolete species and drying temperature using LC-MS and infrared spectroscopy and simultaneous prediction of their major compounds using chemometrics
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletes; Organic acids; Postharvest drying; Species identification; Quality assessment
-
Infrared spectroscopy combined with machine learning: A fast method for origin tracing and dry matter content prediction of Dendrobium officinale Kimura et Migo
作者:Feng, Yangna;Feng, Yangna;Yang, Shaobing;Wang, Yuanzhong
关键词:FT-NIR; ATR-FTIR; Dendrobium officinal; Prediction; Origin tracing
-
Prediction of pyrazines and identification of flavor intensity in boletus bainiugan at different drying temperatures based on feature variables
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Boletus bainiugan; Fourier transform near infrared spectroscopy; Attenuated total reflectance Fourier transform; infrared spectroscopy; Data fusion; Volatile compounds



