Two dimensional correlation spectroscopy combined with ResNet: Efficient method to identify bolete species compared to traditional machine learning
文献类型: 外文期刊
作者: Yan, Ziyun 1 ; Liu, Honggao 2 ; Li, Tao 4 ; Li, Jieqing 1 ; Wang, Yuanzhong 5 ;
作者机构: 1.Yunnan Agr Univ, Coll Resources & Environm, Kunming 650201, Yunnan, Peoples R China
2.Yunnan Agr Univ, Coll Agron & Biotechnol, Kunming 650201, Yunnan, Peoples R China
3.Zhaotong Univ, Zhaotong 657000, Peoples R China
4.Yuxi Normal Univ, Coll Resources & Environm, Yuxi 653199, Peoples R China
5.Yunnan Acad Agr Sci, Inst Med Plants, Kunming 650223, Yunnan, Peoples R China
关键词: Bolete; FT-NIR; Chemometrics; 2DCOS; ResNet
期刊名称:LWT-FOOD SCIENCE AND TECHNOLOGY ( 影响因子:6.056; 五年影响因子:6.295 )
ISSN: 0023-6438
年卷期: 2022 年 162 卷
页码:
收录情况: SCI
摘要: Different species of bolete have different nutritional and medicinal value, which leads to the phenomenon of shoddy in the market from time to time. Therefore, consumers need a fast and effective detection method to identify their species. In this paper, different data pretreatment was carried out for the Fourier transform near infrared (FT-NIR) spectra, and the modeling results of partial least squares discrimination analysis (PLS-DA), support vector machines (SVM) and residual neural network (ResNet) were compared. The results show that PLS-DA and SVM models need a suitable combination of pretreatment for spectral data. The purpose is to improve the accuracy of the model and avoid over fitting. After spectral pretreatment, the accuracy of PLS-DA model were improved to 99.63% and 97.38% respectively. In order to ensure that the SVM model does not have the risk of over fitting, the accuracy of the SVM model after pretreatment were reduced to 98.5% and 93.63%. The ResNet model was established based on the original spectrum. The accuracy of the model was 100%, and there is no over fitting phenomenon, which is one of the advantages of the model. Comparing the above three models, ResNet is the best model for bolete species identification.
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
Rapid prediction of nucleosides content and origin traceability of Boletus bainiugan using Fourier transform near-infrared spectroscopy combined with chemometrics
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Fourier transform near-infrared spectroscopy; Nucleoside compounds; Climatic factors; Two-dimensional correlation spectroscopy; Residual neural networks
-
Predicting the suitable habitat distribution of Polygonatum kingianum under current and future climate scenarios in southwestern Yunnan, China
作者:Hu, Xiaoyan;Yang, Shaobing;Li, Zhimin;Wang, Yuanzhong;Hu, Xiaoyan
关键词:Polygonatum kingianum; Maximum entropy model; Species distribution; Suitable habitat; Geographical traceability
-
Histopathological and Transcriptional Changes in Silkworm Larval Gonads in Response to Chlorfenapyr Exposure
作者:Li, Tao;Hu, Changxiong;Liu, Zenghu;Li, Qiongyan;Fan, Yonghui;Liao, Pengfei;Liu, Min;Yang, Weike;Li, Xingxing;Dong, Zhanpeng
关键词:
Bombyx mori ; chlorfenapyr; reproductive development; drug metabolism; hormone biosynthesis -
Geographical origin identification of Dendrobium Officinale based on FT-NIR and ATR-FTIR spectroscopy
作者:Han, Jiaqi;Hu, Qiang;Wang, Yuanzhong
关键词:Spectral analysis; Data fusion; Two-dimensional correlation spectroscopy; The residual convolutional neural network; Dendrobium officinale Kimura & Migo
-
Classification of bolete species and drying temperature using LC-MS and infrared spectroscopy and simultaneous prediction of their major compounds using chemometrics
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletes; Organic acids; Postharvest drying; Species identification; Quality assessment
-
Infrared spectroscopy combined with machine learning: A fast method for origin tracing and dry matter content prediction of Dendrobium officinale Kimura et Migo
作者:Feng, Yangna;Feng, Yangna;Yang, Shaobing;Wang, Yuanzhong
关键词:FT-NIR; ATR-FTIR; Dendrobium officinal; Prediction; Origin tracing



