Method Superior to Traditional Spectral Identification: FT-NIR Two-Dimensional Correlation Spectroscopy Combined with Deep Learning to Identify the Shelf Life of Fresh Phlebopus portentosus
文献类型: 外文期刊
作者: Wang, Li 1 ; Li, Jieqing 2 ; Li, Tao 3 ; Liu, Honggao 4 ; Wang, Yuanzhong 5 ;
作者机构: 1.Yunnan Agr Univ, Coll Agron & Biotechnol, Kunming 650201, Yunnan, Peoples R China
2.Yunnan Agr Univ, Coll Resources & Environm, Kunming 650201, Yunnan, Peoples R China
3.Yuxi Normal Univ, Coll Resources & Environm, Yuxi 653199, Peoples R China
4.Zhaotong Univ, Coll Agron & Life Sci, Zhaotong 657000, Peoples R China
5.Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R China
期刊名称:ACS OMEGA ( 影响因子:3.512; 五年影响因子:3.613 )
ISSN: 2470-1343
年卷期: 2021 年 6 卷 30 期
页码:
收录情况: SCI
摘要: The taste of fresh mushrooms is always appealing. Phlebopus portentosus is the only porcini that can be cultivated artificially in the world, with a daily output of up to 2 tons and a large sales market. Fresh mushrooms are very susceptible to microbial attacks when stored at 0-2 degrees C for more than 5 days. Therefore, the freshness of P. portentosus must be evaluated during its refrigeration to ensure food safety. According to their freshness, the samples were divided into three categories, namely, category I (1-2 days, 0-48 h, recommended for consumption), category II (3-4 days, 48-96 h, recommended for consumption), and category III (5-6 days, 96-144 h, not recommended). In our study, a fast and reliable shelf life identification method was established through Fourier transform near-infrared (FT-NIR) spectroscopy combined with a machine learning method. Deep learning (DL) is a new focus in the field of food research, so we established a deep learning classification model, traditional supportvector machine (SVM), partial least-squares discriminant analysis (PLS-DA), and an extreme learning machine (ELM) model to identify the shelf life of P. portentosus. The results showed that FT-NIR two-dimensional correlation spectroscopy (2DCOS) combined with the deep learning model was more suitable for the identification of fresh mushroom shelf life and the model had the best robustness. In conclusion, FT-NIR combined with machine learning had the advantages of being nondestructive, fast, and highly accurate in identifying the shelf life of P. portentosus. This method may become a promising rapid analysis tool, which can quickly identify the shelf life of fresh edible mushrooms.
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
Effect of drying temperature on composition of edible mushrooms: Characterization and assessment via HS-GC-MS and IR spectral based volatile profiling and chemometrics
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletus bainiugan; HS-SPME-GC-MS; VOCs; 2DCOS; Chemometrics; Quality estimation
-
The method based on ATR-FTIR spectroscopy combined with feature variable selection for the boletus species and origins identification
作者:Ji, Zhiyi;Li, Jieqing;Ji, Zhiyi;Wang, Yuanzhong;Liu, Honggao
关键词:feature variable selection; food safety; mid-infrared spectroscopy; species identification; traceability; wild boletus
-
A fast method for predicting adenosine content in porcini mushrooms using Fourier transform near-infrared spectroscopy combined with regression model
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Fourier transform near-infrared spectroscopy; Porcini mushrooms; Adenosine; Partial least squares regression
-
Application of ATR-FTIR and FT-NIR spectroscopy coupled with chemometrics for species identification and quality prediction of boletes
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletes; Amino acid metabolomics; LC-MS; FT-NIR; ATR-FTIR; 2DCOS
-
The genus Litsea: A comprehensive review of traditional uses, phytochemistry, pharmacological activities and other studies
作者:Li, Guangyao;Li, Guangyao;Li, Zhimin;Wang, Yuanzhong
关键词:L.; traditional uses; chemical components; pharmacological activities
-
Analysis of the Volatile Components in Different Parts of Three Species of the Genus Amomum via Combined HS-SPME-GC-TOF-MS and Multivariate Statistical Analysis
作者:Gu, Jingjing;Yang, Meiquan;Qi, Mingju;Yang, Tianmei;Wang, Li;Yang, Weize;Zhang, Jinyu;Gu, Jingjing
关键词:genus Amomum; volatile compounds; HS-SPME-GC-TOF-MS; differential metabolites