文献类型: 外文期刊
作者: Yan, Ziyun 1 ; Liu, Honggao 2 ; Li, Jieqing 1 ; Wang, Yuanzhong 3 ;
作者机构: 1.Yunnan Agr Univ, Coll Resources & Environm, Kunming 650201, Yunnan, Peoples R China
2.Zhaotong Univ, Zhaotong, Peoples R China
3.Yunnan Acad Agr Sci, Inst Med Plants, Kunming 650223, Yunnan, Peoples R China
关键词: Chromatography; deep learning; edible mushroom; quality evaluation; spectroscopic
期刊名称:CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY ( 影响因子:6.535; 五年影响因子:6.657 )
ISSN: 1040-8347
年卷期:
页码:
收录情况: SCI
摘要: Edible mushrooms are healthy food with high nutritional value, which is popular with consumers. With the increase of the problem of mushrooms being confused with the real and pollution in the market, people pay more and more attention to food safety. More than 167 articles of edible mushroom published in the past 20 years were reviewed in this paper. The analysis tools and data analysis methods of identification and quality evaluation of edible mushroom species, origin, mineral elements were reviewed. Five techniques for identification and evaluation of edible mushrooms were introduced and summarized. The macroscopic, microscopic and molecular identification techniques can be used to identify species. Chromatography, spectroscopy technology combined with chemometrics can be used for qualitative and quantitative study of mushroom and evaluation of mushroom quality. In addition, multiple supervised pattern-recognition techniques have good classification ability. Deep learning is more and more widely used in edible mushroom, which shows its advantages in image recognition and prediction. These techniques and analytical methods can provide strong support and guarantee for the identification and evaluation of mushroom, which is of great significance to the development and utilization of edible mushroom.
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
ResD-Net: A model for rapid prediction of antioxidant activity in gentian root using FT-IR spectroscopy
作者:Li, Xiaokun;Zeng, Pan;Wu, Xunxun;Yang, Xintong;Liu, Peizhong;Diao, Yong;Lin, Jingcang;Liu, Peizhong;Wang, Yuanzhong
关键词:Antioxidant activity; FT-IR; Gentian; Deep Learning; Chemometrics
-
Development of machine learning models using multi-source data for geographical traceability and content prediction of Eucommia ulmoides leaves
作者:Zhang, Yanying;Zhang, Yanying;Zhu, Xinyan;Wang, Yuanzhong
关键词:Machine learning; Eucommia ulmoides leaves; Geographical traceability; Content prediction; Quality evaluation
-
ATR-FTIR Spectroscopy Preprocessing Technique Selection for Identification of Geographical Origins of Gastrodia elata Blume
作者:Liu, Hong;Li, Jieqing;Liu, Hong;Wang, Yuanzhong;Liu, Honggao
关键词:ATR-FTIR spectroscopy; data preprocessing; DD-SIMCA; Gastrodia elata Blume; GBM; PLS-DA; SVM
-
The method based on ATR-FTIR spectroscopy combined with feature variable selection for the boletus species and origins identification
作者:Ji, Zhiyi;Li, Jieqing;Ji, Zhiyi;Wang, Yuanzhong;Liu, Honggao
关键词:feature variable selection; food safety; mid-infrared spectroscopy; species identification; traceability; wild boletus
-
Effect of drying temperature on composition of edible mushrooms: Characterization and assessment via HS-GC-MS and IR spectral based volatile profiling and chemometrics
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletus bainiugan; HS-SPME-GC-MS; VOCs; 2DCOS; Chemometrics; Quality estimation
-
A fast method for predicting adenosine content in porcini mushrooms using Fourier transform near-infrared spectroscopy combined with regression model
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Fourier transform near-infrared spectroscopy; Porcini mushrooms; Adenosine; Partial least squares regression