Origin identification of Panax notoginseng by multi-sensor information fusion strategy of infrared spectra combined with random forest
文献类型: 外文期刊
作者: Zhou, Yuhou 1 ; Zuo, Zhitian 2 ; Xu, Furong 1 ; Wang, Yuanzhong 2 ;
作者机构: 1.Yunnan Univ Chinese Med, Coll Tradit Chinese Med, 1076 Yuhua Rd, Kunming 650500, Yunnan, Peoples R China
2.Yunnan Acad Agr Sci, Inst Med Plants, Kunming 650200, Yunnan, Peoples R China
关键词: Panax notoginseng; Origin identification; Sensors; Variable importance
期刊名称:SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY ( 影响因子:4.098; 五年影响因子:3.464 )
ISSN: 1386-1425
年卷期: 2020 年 226 卷
页码:
收录情况: SCI
摘要: Traditional Chinese medicine Panax notoginseng is a valuable geo-authentic herbal material. The difference of growth environment in different producing areas has significant influence on the quality of traditional Chinese medicine, and origin identification is an important part of the quality assessment of P. notoginseng. In this study, Fourier transform mid-infrared (FT-MIR) and near infrared (NIR) sensor technologies combined with single spectra analysis and multi-sensor information fusion strategy (low-, mid- and high-level) for the origin identification of 210 P. notoginseng samples from five cities in Yunnan Province, China. FT-MIR spectra were considered to play a greater role in data analysis than NIR spectra. Random forest (RF) was used to establish classification models. The result of the random forest Boruta (RF-Bo) model and the random forest variable selection (RF-Vs) model based on high-level multi-sensor information fusion strategy was satisfactory. In addition, the RF-Bo model based on high-level multi-sensor information fusion strategy was faster and simpler in data analysis and the accuracy was 95.6%. (C) 2019 Elsevier B.V. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
ResD-Net: A model for rapid prediction of antioxidant activity in gentian root using FT-IR spectroscopy
作者:Li, Xiaokun;Zeng, Pan;Wu, Xunxun;Yang, Xintong;Liu, Peizhong;Diao, Yong;Lin, Jingcang;Liu, Peizhong;Wang, Yuanzhong
关键词:Antioxidant activity; FT-IR; Gentian; Deep Learning; Chemometrics
-
Development of machine learning models using multi-source data for geographical traceability and content prediction of Eucommia ulmoides leaves
作者:Zhang, Yanying;Zhang, Yanying;Zhu, Xinyan;Wang, Yuanzhong
关键词:Machine learning; Eucommia ulmoides leaves; Geographical traceability; Content prediction; Quality evaluation
-
ATR-FTIR Spectroscopy Preprocessing Technique Selection for Identification of Geographical Origins of Gastrodia elata Blume
作者:Liu, Hong;Li, Jieqing;Liu, Hong;Wang, Yuanzhong;Liu, Honggao
关键词:ATR-FTIR spectroscopy; data preprocessing; DD-SIMCA; Gastrodia elata Blume; GBM; PLS-DA; SVM
-
The method based on ATR-FTIR spectroscopy combined with feature variable selection for the boletus species and origins identification
作者:Ji, Zhiyi;Li, Jieqing;Ji, Zhiyi;Wang, Yuanzhong;Liu, Honggao
关键词:feature variable selection; food safety; mid-infrared spectroscopy; species identification; traceability; wild boletus
-
Effect of drying temperature on composition of edible mushrooms: Characterization and assessment via HS-GC-MS and IR spectral based volatile profiling and chemometrics
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletus bainiugan; HS-SPME-GC-MS; VOCs; 2DCOS; Chemometrics; Quality estimation
-
A fast method for predicting adenosine content in porcini mushrooms using Fourier transform near-infrared spectroscopy combined with regression model
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Fourier transform near-infrared spectroscopy; Porcini mushrooms; Adenosine; Partial least squares regression