Species discrimination and total polyphenol prediction of porcini mushrooms by fourier transform mid-infrared (FT-MIR) spectrometry combined with multivariate statistical analysis
文献类型: 外文期刊
作者: Li, Xiu-Ping 1 ; Li, Jieqing 1 ; Li, Tao 3 ; Liu, Honggao 1 ; Wang, Yuanzhong 1 ;
作者机构: 1.Yunnan Agr Univ, Coll Agron & Biotechnol, Kunming, Yunnan, Peoples R China
2.Yunnan Acad Agr Sci, Inst Med Plants, Kunming, Yunnan, Peoples R China
3.Yuxi Normal Univ, Coll Resources & Environm, Yuxi, Peoples R China
关键词: data fusion; FT-MIR spectroscopy; porcini mushroom; species discrimination; total polyphenol prediction
期刊名称:FOOD SCIENCE & NUTRITION ( 影响因子:2.863; 五年影响因子:3.141 )
ISSN: 2048-7177
年卷期: 2020 年 8 卷 2 期
页码:
收录情况: SCI
摘要: The plateau specialty agricultural products, wild porcini mushrooms, have great value both as a superb cuisine and as a potential medication. Due to quality different between species added with the fraud behavior in sales process, make poor quality or poisonous sample inflow into the market, which pose a health risk for consumers, but also disrupted the mushroom market. Traditional analysis way is time-consuming and laborious. Therefore, the aim of this study is to develop a way using fourier transform mid-infrared (FT-MIR) spectrometry and data fusion strategies for the fast and accurate species discrimination and predict amount of total polyphenol in four porcini mushrooms. The t-distributed stochastic neighbor embedding based on mid-level data fusion showed two species of Boletus edulis and B. umbriniporus have been identified. The order of correct rate of PLS-DA models was mid-level data fusion(q) (100%) > mid-level data fusion(e) (97.06%) = mid-level data fusion(v) (97.06%) = stipes (97.06%) > low-level data fusion (94.12%) > caps (91.18%). The order of correct rate of grid-search support vector machine models was low-level data fusion (100%) > caps (94.12%) > stipes (91.18%), and the order of particle swarm optimization support vector machine was low-level data fusion (100%) > caps (97.06%) > stipes (88.24%). The mid-level data fusion(q) and low-level data fusion had best discrimination accuracy (100%) allowing each mushroom classed into its real species, which could be used for accurate discrimination of samples. B. edulis mushrooms had highest total polyphenol, with 14.76 mg/g dw and 17.33 in caps and stipes mg/g dw, respectively. The phenols were easier to accumulate in the caps in Leccinum rugosiceps (1.03) and B. tomentipes (1.19), and the opposite phenomenon is observed in B. edulis (0.85) and B. umbriniporus (0.95). The correlation coefficient and residual predictive deviation of best prediction model were 86.76% and 2.40%, respectively, indicating that that there is good relevance between FT-MIR and total polyphenol content, which could be used to predict roughly polyphenols content in mushrooms.
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
Optimization of the selection of suitable harvesting periods for medicinal plants: taking Dendrobium officinale as an example
作者:Li, Peiyuan;Li, Li;Li, Peiyuan;Wang, Yuanzhong;Shen, Tao
关键词:Medicinal plant; Dendrobium officinale; ATR-FTIR; ResNet; Harvesting period; Anticipate
-
Identification of geographical origins of Gastrodia elata Blume based on multisource data fusion
作者:Liu, Hong;Li, Jieqing;Liu, Hong;Wang, Yuanzhong;Liu, Honggao
关键词:2DCOS images; ATR-FTIR; data fusion; FT-NIR; Gastrodia elata Blume; geographical discrimination
-
Differences between two plants fruits: Amomum tsaoko and Amomum maximum, using the SPME-GC-MS and FT-NIR to classification
作者:Li, Fengjiao;Yang, Weize;Yang, Meiquan;Wang, Yuanzhong;Zhang, Jinyu;Li, Fengjiao
关键词:Amomum tsaoko Crevost et Lemarie; Amomum maximum Roxb.; GC-MS; FT-NIR; Classification
-
Small-scale districts identification of Boletus bainiugan from Yunnan province of China based on residual convolutional neural network continuous classification models
作者:Chen, Xiong;Liu, HongGao;Chen, Xiong;Wang, YuanZhong;Li, JieQing
关键词:Small-scale districts; Geographical origin; Boletus bainiugan; FT-NIR; 2D-COS; ResNet
-
The genus Litsea: A comprehensive review of traditional uses, phytochemistry, pharmacological activities and other studies
作者:Li, Guangyao;Li, Guangyao;Li, Zhimin;Wang, Yuanzhong
关键词:L.; traditional uses; chemical components; pharmacological activities
-
Application of ATR-FTIR and FT-NIR spectroscopy coupled with chemometrics for species identification and quality prediction of boletes
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletes; Amino acid metabolomics; LC-MS; FT-NIR; ATR-FTIR; 2DCOS



