Comparison and Identification for Rhizomes and Leaves of Paris yunnanensis Based on Fourier Transform Mid-Infrared Spectroscopy Combined with Chemometrics
文献类型: 外文期刊
作者: Pei, Yi-Fei 1 ; Zhang, Qing-Zhi 2 ; Zuo, Zhi-Tian 1 ; Wang, Yuan-Zhong 1 ;
作者机构: 1.Yunnan Acad Agr Sci, Inst Med Plants, Kunming 650200, Yunnan, Peoples R China
2.Yunnan Univ Tradit Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Yunnan, Peoples R China
关键词: Paris polyphylla Smith var; yunnanensis; multivariate analysis; chemometrics; Fourier transform infrared
期刊名称:MOLECULES ( 影响因子:4.411; 五年影响因子:4.587 )
ISSN: 1420-3049
年卷期: 2018 年 23 卷 12 期
页码:
收录情况: SCI
摘要: Paris polyphylla, as a traditional herb with long history, has been widely used to treat diseases in multiple nationalities of China. Nevertheless, the quality of P. yunnanensis fluctuates among from different geographical origins, so that a fast and accurate classification method was necessary for establishment. In our study, the geographical origin identification of 462 P. yunnanensis rhizome and leaf samples from Kunming, Yuxi, Chuxiong, Dali, Lijiang, and Honghe were analyzed by Fourier transform mid infrared (FT-MIR) spectra, combined with partial least squares discriminant analysis (PLS-DA), random forest (RF), and hierarchical cluster analysis (HCA) methods. The obvious cluster tendency of rhizomes and leaves FT-MIR spectra was displayed by principal component analysis (PCA). The distribution of the variable importance for the projection (VIP) was more uniform than the important variables obtained by RF, while PLS-DA models obtained higher classification abilities. Hence, a PLS-DA model was more suitably used to classify the different geographical origins of P. yunnanensis than the RF model. Additionally, the clustering results of different geographical origins obtained by HCA dendrograms also proved the chemical information difference between rhizomes and leaves. The identification performances of PLS-DA and the RF models of leaves FT-MIR matrixes were better than those of rhizomes datasets. In addition, the model classification abilities of combination datasets were higher than the individual matrixes of rhizomes and leaves spectra. Our study provides a reference to the rational utilization of resources, as well as a fast and accurate identification research for P. yunnanensis samples.
- 相关文献
作者其他论文 更多>>
-
Suitable habitat prediction and identification of origin of Lanxangia tsao-ko
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:Medicinal plant; FT-NIR spectroscopy; Machine learning; Suitable habitats; Origin identification
-
Applications of chemical fingerprints and machine learning in plant ecology: Recent progress and future perspectives
作者:Zhong, Chen;Wang, Yuan-Zhong;Zhong, Chen;Li, Li
关键词:Chemical fingerprints; Chemometrics; Plant ecology; Analytical techniques; Machine learning algorithms
-
A rapid method for identification of Lanxangia tsaoko origin and fruit shape: FT-NIR combined with chemometrics and image recognition
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang;Yang, Shao-bing;Wang, Yuan-zhong
关键词:chemometrics; classification; Fourier transform-near infrared spectroscopy; image recognition; Lanxangia tsaoko
-
Analysis of Chemical Changes during Maturation of Amomum tsao-ko Based on GC-MS, FT-NIR, and FT-MIR
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:
-
FT-IR spectroscopy coupled with HPLC for qualitative and quantitative analysis of different parts of Gentiana rigescens Franch
作者:He, Gang;Zhu, Xin-yan;Wang, Yuan-zhong;He, Gang;Shen, Tao
关键词:Gentiana rigescens; Total secoiridoids; FT-IR; HPLC; Content prediction
-
The potential of Amomum tsao-ko as a traditional Chinese medicine: Traditional clinical applications, phytochemistry and pharmacological properties
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:Amomum tsao-ko; Chinese herbal medicine; Chemical compounds; Physiological characteristics; Review
-
An integrated chemical characterization based on FT-NIR, and GC-MS for the comparative metabolite profiling of 3 species of the genus Amomum
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:Genus Amomum; Quality markers; Identification research; Network pharmacology; Deep learning