Application of UV-Vis and Infrared Spectroscopy on Wild Edible Bolete Mushrooms Discrimination and Evaluation: A Review
文献类型: 外文期刊
作者: Chen, Jian 1 ; Li, Jie-qing 3 ; Li, Tao 4 ; Liu, Hong-gao 1 ; Wang, Yuan-zhong 2 ;
作者机构: 1.Yunnan Agr Univ, Coll Agron & Biotechnol, Kunming 650201, Yunnan, Peoples R China
2.Yunnan Acad Agr Sci, Inst Med Plants, Kunming 650223, Yunnan, Peoples R China
3.Yunnan Agr Univ, Coll Resources & Environm, Kunming, Yunnan, Peoples R China
4.Yuxi Normal Univ, Coll Resources & Environm, Yuxi, Peoples R China
5.Zhaotong Univ, Zhaotong, Peoples R China
关键词: Chemometrics; discrimination and evaluation; IR spectroscopy; UV-Vis spectroscopy; wild edible bolete mushrooms
期刊名称:CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY ( 影响因子:6.535; 五年影响因子:6.657 )
ISSN: 1040-8347
年卷期:
页码:
收录情况: SCI
摘要: Nowadays, wild edible bolete mushrooms are more and more attractive among consumers due to their natural health, nutrition, and delicious characteristics. Appropriate analytical techniques together with multivariate statistics analysis are required for the quality control and evaluation of these edible mushrooms. Ultraviolet-visible (UV-Vis) and infrared (IR) technologies have the advantages of time-saving, low-cost, and environmentally friendly, are now prominent among major analytical technologies for quality evaluation of bolete mushrooms. Chemometrics methods have been developed to solve classification and regression issues of bolete mushrooms in combination with spectrum. This paper reviewed the most recent applications of UV-Vis and IR technology coupled with chemometrics in wild edible bolete mushrooms, including the identification of species, origin, and storage duration, fraud detection, and antioxidant properties evaluation, and discussed the limitations and prospects of spectroscopy technologies in the researches of bolete mushrooms, excepting to provide a reference for further research and practical application of wild edible bolete mushrooms.
- 相关文献
作者其他论文 更多>>
-
A rapid method for identification of Lanxangia tsaoko origin and fruit shape: FT-NIR combined with chemometrics and image recognition
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang;Yang, Shao-bing;Wang, Yuan-zhong
关键词:chemometrics; classification; Fourier transform-near infrared spectroscopy; image recognition; Lanxangia tsaoko
-
Analysis of Chemical Changes during Maturation of Amomum tsao-ko Based on GC-MS, FT-NIR, and FT-MIR
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:
-
FT-IR spectroscopy coupled with HPLC for qualitative and quantitative analysis of different parts of Gentiana rigescens Franch
作者:He, Gang;Zhu, Xin-yan;Wang, Yuan-zhong;He, Gang;Shen, Tao
关键词:Gentiana rigescens; Total secoiridoids; FT-IR; HPLC; Content prediction
-
Suitable habitat prediction and identification of origin of Lanxangia tsao-ko
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:Medicinal plant; FT-NIR spectroscopy; Machine learning; Suitable habitats; Origin identification
-
Applications of chemical fingerprints and machine learning in plant ecology: Recent progress and future perspectives
作者:Zhong, Chen;Wang, Yuan-Zhong;Zhong, Chen;Li, Li
关键词:Chemical fingerprints; Chemometrics; Plant ecology; Analytical techniques; Machine learning algorithms
-
An integrated chemical characterization based on FT-NIR, and GC-MS for the comparative metabolite profiling of 3 species of the genus Amomum
作者:He, Gang;Yang, Shao-bing;Wang, Yuan-zhong;He, Gang
关键词:Genus Amomum; Quality markers; Identification research; Network pharmacology; Deep learning
-
Machine learning and deep learning based on the small FT-MIR dataset for fine-grained sampling site recognition of boletus tomentipes
作者:Dong, Jian-E;Dong, Jian-E;Li, Jieqing;Liu, Honggao;Liu, Honggao;Wang, Yuan-Zhong;Wang, Yuan-Zhong
关键词:Cadmium; Sampling site; Machine learning algorithm; Gradient Boosting Machine algorithm; Image processing; Deep learning



