您好,欢迎访问云南省农业科学院 机构知识库!

Quality Assessment of Gentiana rigescens from Different Geographical Origins Using FT-IR Spectroscopy Combined with HPLC

文献类型: 外文期刊

作者: Wu, Zhe 1 ; Zhao, Yanli 1 ; Zhang, Ji 1 ; Wang, Yuanzhong 1 ;

作者机构: 1.Yunnan Acad Agr Sci, Inst Med Plants, Kunming 650200, Yunnan, Peoples R China

2.Yunnan Tech Ctr Qual Chinese Mat Med, Kunming 650200, Yunnan, Peoples R China

3.Yunnan Univ Tradit Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Yunnan, Peoples R China

关键词: FT-IR spectroscopy;qualitative;partial least squares discriminant analysis;quantitative;support vector machines regression;Gentiana rigescens

期刊名称:MOLECULES ( 影响因子:4.411; 五年影响因子:4.587 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Gentiana rigescens is a precious herbal medicine in China because of its liver-protective and choleretic effects. A method for the qualitative identification and quantitative evaluation of G. rigescens from Yunnan Province, China, has been developed employing Fourier transform infrared (FT-IR) spectroscopy and high performance liquid chromatography (HPLC) with the aid of chemometrics such as partial least squares discriminant analysis (PLS-DA) and support vector machines (SVM) regression. Our results indicated that PLS-DA model could efficiently discriminate G. rigescens from different geographical origins. It was found that the samples which could not be determined accurately were in the margin or outside of the 95% confidence ellipses. Moreover, the result implied that geographical origins variation of root samples were more obvious than that of stems and leaves. The quantitative analysis was based on gentiopicroside content which was the main active constituent in G. rigescens. For the prediction of gentiopicroside, the performances of model based on the parameters selected through grid search algorithm (GS) with seven-fold cross validation were better than those based on genetic algorithm (GA) and particle swarm optimization algorithm (PSO). For the SVM-GS model, the result was satisfactory. FT-IR spectroscopy coupled with PLS-DA and SVM-GS can be an alternative strategy for qualitative identification and quantitative evaluation of G. rigescens.

  • 相关文献

[1]Quantitative determination and evaluation of Paris polyphylla var. yunnanensis with different harvesting times using UPLC-UV-MS and FT-IR spectroscopy in combination with partial least squares discriminant analysis. Yang, Yuan-Gui,Yang, Yuan-Gui,Zhang, Ji,Zhao, Yan-Li,Zhang, Jin-Yu,Wang, Yuan-Zhong,Yang, Yuan-Gui,Zhang, Ji,Zhao, Yan-Li,Zhang, Jin-Yu,Wang, Yuan-Zhong.

[2]Analysis and Discrimination of the Medicinal Plants Swertia Davidi Franch Based on Infrared Spectroscopy. Di Zhun,Long Hua,Li Li,Di Zhun,Zhao Yan-li,Zuo Zhi-tian,Wang Yuan-zhong,Zhang Xue. 2016

[3]Rapid Identification of Dendrobium Plants Based on Near Infrared Diffuse Reflection Spectroscopy. Ding Chang-chun,Xia Nian-he,Ding Chang-chun,Ding Chang-chun,Fang Xiang-jing,Li Gui-xiang,Zhao Yan-li,Wang Yuan-zhong,Li Tao. 2014

[4]Evaluation of Mineral Elements in Gentiana rigescens in China. Zhao, Yan-Li,Zhang, Ji,Zhang, Jin-Yu,Wang, Yuan-Zhong,Jin, Hang,Yuan, Tian-Jun,Shen, Tao.

[5]Determination of mineral elements in Gentiana rigescens from different zones of Yunnan, China. Zhang, Jinyu,Yuan, Tianjun,Wang, Yuanzhong,Zhao, Yanli,Zhang, Ji,Jin, Hang,Yuan, Tianjun.

[6]Evaluation and quantitative analysis of different growth periods of herb-arbor intercropping systems using HPLC and UV-vis methods coupled with chemometrics. Chu, Bo-wen,Zhang, Ji,Li, Zhi-min,Zhao, Yan-li,Zuo, Zhi-tian,Wang, Yuan-zhong,Li, Wan-yi,Chu, Bo-wen,Zhang, Ji,Li, Zhi-min,Zhao, Yan-li,Zuo, Zhi-tian,Wang, Yuan-zhong,Li, Wan-yi,Li, Wan-yi.

[7]Determination of Iridoids in Gentiana rigescens by Infrared Spectroscopy and Multivariate Analysis. Qi, Lu-Ming,Qi, Lu-Ming,Zhang, Ji,Zuo, Zhi-Tian,Zhao, Yan-Li,Wang, Yuan-Zhong,Hang, Jin,Qi, Lu-Ming,Zhang, Ji,Zuo, Zhi-Tian,Zhao, Yan-Li,Wang, Yuan-Zhong,Hang, Jin.

[8]Characterization of Gentiana rigescens by Ultraviolet-Visible and Infrared Spectroscopies with Chemometrics. Qi, LuMing,Qi, LuMing,Zhang, Ji,Zhao, YanLi,Zuo, ZhiTian,Wang, Yuan-Zhong,Jin, Hang.

[9]De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens. Zhang, Xiaodong,Li, Caixia,Allan, Andrew C.,Wang, Yuanzhong,Yao, Qiuyang. 2015

[10]Investigation of metabolites accumulation in medical plant Gentiana rigescens during different growing stage using LC-MS/MS and FT-IR. Pan, Yu,Zhang, Ji,Zhao, Yan-Li,Wang, Yuan-Zhong,Pan, Yu,Huang, Heng-Yu. 2015

[11]The Common and Variation Peak Ratio Dual Index Sequence Analysis in UV Fingerprint Spectra of Gentiana Rigescens. Yuan Tian-jun,Wang Yuan-zhong,Zhao Yan-li,Zhang Ji,Jin Hang,Zhang Jin-yu,Yuan Tian-jun. 2011

[12]Study on the Discrimination of FTIR Spectroscopy of Gentiana Rigescens with Different Harvest Time. Shen Yun-xia,Zhao Yan-li,Zhang Ji,Jin Hang,Wang Yuan-zhong,Shen Yun-xia. 2016

[13]Study on the Discrimination of Gentiana Rigescens with Different Processing Methods by Using FTIR Spectroscopy. Shen Yun-xia,Zhang Qing-zhi,Shen Yun-xia,Zhao Yan-li,Zhang Ji,Wang Yuan-zhong. 2016

[14]Optimization of ultrasonic extraction by response surface methodology combined with ultrafast liquid chromatography-ultraviolet method for determination of four iridoids in Gentiana rigescens. Pan, Yu,Zhang, Ji,Zuo, Zhi-Tian,Jin, Hang,Wang, Yuan-Zhong,Li, Wan-Yi,Pan, Yu,Shen, Tao. 2015

[15]Comprehensive Quality Assessment Based Specific Chemical Profiles for Geographic and Tissue Variation in Gentiana rigescens Using HPLC and FTIR Method Combined with Principal Component Analysis. Li, Jie,Zhang, Ji,Zhao, Yan-Li,Wang, Yuan-Zhang,Li, Jie,Huang, Heng-Yu. 2017

[16]Study on Different Parts of Wild and Cultivated Gentiana Rigescens with Fourier Transform Infrared Spectroscopy. Shen Yun-xia,Zhang Qing-zhi,Shen Yun-xia,Zhao Yan-li,Zhang Ji,Zuo Zhi-tian,Wang Yuan-zhong. 2016

[17]Study on Gentiana Rigescens with Silvomedicinal and Agriosivomedicinal Systems with FTIR Spectroscopy. Shen Yun-xia,Zhao Yan-li,Zhang Ji,Jin Hang,Wang Yuan-zhong,Shen Yun-xia. 2016

作者其他论文 更多>>