Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices
文献类型: 外文期刊
作者: Hua, Lingling 1 ; Liu, Jian 2 ; Zhai, Limei 1 ; Xi, Bin 3 ; Zhang, Fulin 4 ; Wang, Hongyuan 1 ; Liu, Hongbin 1 ; Chen, An 1 ;
作者机构: 1.Chinese Acad Agr Sci, Key Lab Nonpoint Source Pollut Control, Minist Agr, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
2.Penn State Univ, Dept Plant Sci, University Pk, PA 16802 USA
3.Minist Agr, Rural Energy & Environm Agcy, Beijing 100081, Peoples R China
4.Hubei Acad Agr Sci, Inst Plant Protect Soil & Fertilizer Sci, Wuhan 430064, Hubei, Peoples R China
5.Yunnan Acad Agr Sci, Agr Resources & Environm Inst, Kunming 650205, Yunnan, Peoples R China
关键词: Field ponding water;Nutrient management;Phosphorus;Rice;Runoff;Water quality
期刊名称:AGRICULTURE ECOSYSTEMS & ENVIRONMENT ( 影响因子:5.567; 五年影响因子:6.064 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Phosphorus (P) runoff from arable land is a major cause for eutrophication of many surface waters. However, relatively little research has been conducted on managing P in rice (Oryza sativa L.) production systems, where fanning practices differ from those of upland cropping systems due to water ponding on the soil surface (field ponding water; FPW). Because FPW is a direct source of surface runoff, identifying the main source of P and the critical period of high P concentrations in the FPW provide important insights to mitigating P runoff losses. In this study, field monitoring and laboratory incubation experiments were combined to evaluate how soil P content and conventional P fertilizer application affected FPW P concentrations in rice-wheat (Triticum aestivum L.) rotation systems of five Chinese rice producing regions. All soils had Olsen-P concentrations (10.1-20.5 mg kg(-1)) well below the critical levels (30-172 mg kg(-1)) for promoted risks of P loss. However, conventional P application rate significantly elevated FPW P concentrations compared to no P application, and P fertilizer contributed 47-92% of total P (TP) and 59-97% of total dissolved P (TDP) in the FPW. Temporarily, both TP and TDP concentrations peaked one day after P application (0.15-8.90 mg TP L-1 and 0.16-4.49 mg TDP L-1), then decreased rapidly and stabilized five days later. We conclude that fertilizer is the major source of P loss in Chinese rice production systems, and that P fertilizer rate should be optimized to reduce P concentrations in the effluent water in the first week following P application.
- 相关文献
作者其他论文 更多>>
-
Human-caused increases in organic carbon burial in plateau lakes: The response to warming effect
作者:Yin, Jiqing;Li, Taohui;Zhang, Wenxiang;Yin, Jiqing;Li, Taohui;Zhang, Wenxiang;Yin, Jiqing;Hu, Wanli;Chen, Anqiang
关键词:Plateau lake; Organic carbon burial; Anthropogenic; Urbanization; Climatic warming
-
Shallow groundwater table fluctuations promote the accumulation and loss of phosphorus from surface soil to deeper soil in croplands around plateau lakes in Southwest China
作者:Chen, Qingfei;Min, Jinheng;Zhang, Dan;Chen, Qingfei;Chen, Anqiang;Hu, Wanli;Wang, Chi;Fu, Bin;Li, Wenchao
关键词:Shallow groundwater table fluctuation; Soil phosphorus accumulation; Soil phosphorus loss; Cropland; Soil profile
-
Shallow groundwater table fluctuations weaken nitrogen accumulation in the thin layer vadose zone of cropland around plateau lakes, Southwest China
作者:Chen, Qingfei;Min, Jinheng;Li, Lin;Zhang, Dan;Chen, Qingfei;Chen, Anqiang;Hu, Wanli;Wang, Chi;Fu, Bin;Guo, Shufang
关键词:Shallow groundwater table fluctuation; Soil nitrogen accumulation; Soil nitrogen loss; Soil profile; Cropland
-
Organic substitution accumulates more nitrogen in soil while maintaining unchanged nitrogen use efficiency in rice-fava bean rotation system
作者:Wang, Panlei;Tang, Li;Wang, Panlei;Chen, Anqiang;Sun, Xi;Du, Caiyan;Zhu, Hongye;Pan, Yanhua;Wang, Panlei;Chen, Anqiang;Sun, Xi;Du, Caiyan;Zhu, Hongye;Pan, Yanhua;Wang, Bin;Tang, Li
关键词:drought-flood alternation; N use efficiency; organic substitution management; paddy-upland rotation; soil N pool
-
Nitrogen in soil, manure and sewage has become a major challenge in controlling nitrate pollution in groundwater around plateau lakes, Southwest China
作者:Cui, Rongyang;Liu, Gangcai;Cui, Rongyang;Liu, Gangcai;Cui, Rongyang;Cui, Rongyang;Hu, Wanli;Zhao, Xinmei;Yan, Hui;Chen, Anqiang;Zhang, Dan
关键词:Groundwater; NO3- isotopes; NO3- pollution; N cycling
-
Returned straw reduces nitrogen runoff loss by influencing nitrification process through modulating soil C:N of different paddy systems
作者:Wang, Shaopeng;Zhai, Limei;Liu, Hongbin;Guo, Shufang;Zhang, Fulin;Hua, Lingling
关键词:Rice; Nitrogen runoff losses; Straw return; Nitrogen cycle bacteria; Soil C:N; Non-point source pollution
-
Prediction of phosphorus concentrations in shallow groundwater in intensive agricultural regions based on machine learning
作者:Yang, Heng;Ye, Yuanhang;Chen, Qingfei;Zhang, Dan;Wang, Panlei;Chen, Anqiang;Cui, Rongyang;Cui, Rongyang
关键词:Shallow groundwater; Phosphorus; Machine learning; Intensive agricultural region