Study on the identification and evaluation of growth years for Paris polyphylla var. yunnanensis using deep learning combined with 2DCOS
文献类型: 外文期刊
作者: Yue, JiaQi 1 ; Li, ZhiMin 1 ; Zuo, ZhiTian 1 ; Zhao, YanLi 1 ; Zhang, Ji 1 ; Wang, YuanZhong 1 ;
作者机构: 1.Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R China
2.Yunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Yunnan, Peoples R China
关键词: P; polyphylla var; yunnanensis; ATR-FTIR; Growth years; Dry matter accumulation in rhizome; Resnet
期刊名称:SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY ( 影响因子:4.098; 五年影响因子:3.464 )
ISSN: 1386-1425
年卷期: 2021 年 261 卷
页码:
收录情况: SCI
摘要: Paris polyphylla var. yunnanensis, as perennial plants, its quality is closely related to growth period. Different harvest years determine the dry matter accumulation of its medicinal parts and the dynamic accumulation of active ingredients, as well as its economic value and medicinal value. Therefore, it is necessary to establish a systematic evaluation method for the identification and evaluation of P. polyphylla var. yunnanensis with different growth years. Deep learning has a powerful ability in recognition. This study extends it to the identification analysis of medicinal plants from the perspective of spectrum. For the first time, two-dimensional correlation spectroscopy (2DCOS) based on the attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR) combined with residual neural network (Resnet) was used to identify growth years. 525 samples were collected, 4725 2DCOS images were drawn, and the dry matter accumulation in rhizomes of different growth years and different sampling sites were briefly analyzed. The results show that the eight-year-old P. polyphylla var. yunnanensis in Dali has higher economic value and medicinal value. The synchronous 2DCOS models based on ATR-FTIR can realize the identification of growth years with accuracy of 100%. Synchronous 2DCOS are more suitable for the identification of medicinal plants with complex systems. 2DCOS images with different colors and second derivative processing cannot optimize the modeling results. In summary, the method we established is innovative and feasible. It not only solved the identification of growth years, expanded the application field of deep learning, but could also be extended to further research on other medicinal plants. (c) 2021 Elsevier B.V. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
Rapid prediction of nucleosides content and origin traceability of Boletus bainiugan using Fourier transform near-infrared spectroscopy combined with chemometrics
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Fourier transform near-infrared spectroscopy; Nucleoside compounds; Climatic factors; Two-dimensional correlation spectroscopy; Residual neural networks
-
Predicting the suitable habitat distribution of Polygonatum kingianum under current and future climate scenarios in southwestern Yunnan, China
作者:Hu, Xiaoyan;Yang, Shaobing;Li, Zhimin;Wang, Yuanzhong;Hu, Xiaoyan
关键词:Polygonatum kingianum; Maximum entropy model; Species distribution; Suitable habitat; Geographical traceability
-
Population structure and adaptive signals in the white-backed planthopper, Sogatella furcifera inferred from genome-wide analysis
作者:Li, Hongran;Peng, Yan;Chess-Kadouste, Vigan;Zhao, Chongjun;Li, Zhimin;Gabuin, Nimlin Dickson;Xiao, Yutao;Liu, Ying;Chen, Aidong;Mao, Kaikai;Chu, Dong;Liang, Jingang
关键词:Sogatella furcifera; genome resequencing; gene flow; migration; selection signals; mitochondrial genome
-
Geographical origin identification of Dendrobium Officinale based on FT-NIR and ATR-FTIR spectroscopy
作者:Han, Jiaqi;Hu, Qiang;Wang, Yuanzhong
关键词:Spectral analysis; Data fusion; Two-dimensional correlation spectroscopy; The residual convolutional neural network; Dendrobium officinale Kimura & Migo
-
Classification of bolete species and drying temperature using LC-MS and infrared spectroscopy and simultaneous prediction of their major compounds using chemometrics
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletes; Organic acids; Postharvest drying; Species identification; Quality assessment
-
Infrared spectroscopy combined with machine learning: A fast method for origin tracing and dry matter content prediction of Dendrobium officinale Kimura et Migo
作者:Feng, Yangna;Feng, Yangna;Yang, Shaobing;Wang, Yuanzhong
关键词:FT-NIR; ATR-FTIR; Dendrobium officinal; Prediction; Origin tracing



