Application of variable selection in the origin discrimination of Wolfiporia cocos (FA Wolf) Ryvarden & Gilb. based on near infrared spectroscopy
文献类型: 外文期刊
作者: Yuan, Tianjun 1 ; Zhao, Yanli 1 ; Zhang, Ji 1 ; Wang, Yuanzhong 1 ;
作者机构: 1.Yunnan Acad Agr Sci, Inst Med Plants, Kunming 650200, Yunnan, Peoples R China
2.Yunnan Comtestor CO LTD, Kunming, Yunnan, Peoples R China
期刊名称:SCIENTIFIC REPORTS ( 影响因子:4.379; 五年影响因子:5.133 )
ISSN: 2045-2322
年卷期: 2018 年 8 卷
页码:
收录情况: SCI
摘要: Dried sclerotium of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. is a traditional Chinese medicine. Its chemical components showed difference among geographical origins, which made it difficult to keep therapeutic potency consistent. The identification of the geographical origin of W. cocos is the fundamental prerequisite for its worldwide recognition and acceptance. Four variable selection methods were employed for near infrared spectroscopy (NIR) variable selection and the characteristic variables were screened for the establishment of Fisher function models in further identification of the origin of W. cocos from Yunnan, China. For the obvious differences between poriae cutis (fu-ling-pi in Chinese, or FLP) and the inner part (bai-fu-ling in Chinese, or BFL) of the sclerotia of W. cocos in the pattern space of principal component analysis (PCA), we established discriminant models for FLP and BFL separately. Through variable selection, the models were significant improved and also the models were simplified by using only a small part of the variables. The characteristic variables were screened (13 for BFL and 10 for FLP) to build Fisher discriminant function models and the validation results showed the models were reliable and effective. Additionally, the characteristic variables were interpreted.
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
ResD-Net: A model for rapid prediction of antioxidant activity in gentian root using FT-IR spectroscopy
作者:Li, Xiaokun;Zeng, Pan;Wu, Xunxun;Yang, Xintong;Liu, Peizhong;Diao, Yong;Lin, Jingcang;Liu, Peizhong;Wang, Yuanzhong
关键词:Antioxidant activity; FT-IR; Gentian; Deep Learning; Chemometrics
-
Development of machine learning models using multi-source data for geographical traceability and content prediction of Eucommia ulmoides leaves
作者:Zhang, Yanying;Zhang, Yanying;Zhu, Xinyan;Wang, Yuanzhong
关键词:Machine learning; Eucommia ulmoides leaves; Geographical traceability; Content prediction; Quality evaluation
-
ATR-FTIR Spectroscopy Preprocessing Technique Selection for Identification of Geographical Origins of Gastrodia elata Blume
作者:Liu, Hong;Li, Jieqing;Liu, Hong;Wang, Yuanzhong;Liu, Honggao
关键词:ATR-FTIR spectroscopy; data preprocessing; DD-SIMCA; Gastrodia elata Blume; GBM; PLS-DA; SVM
-
The method based on ATR-FTIR spectroscopy combined with feature variable selection for the boletus species and origins identification
作者:Ji, Zhiyi;Li, Jieqing;Ji, Zhiyi;Wang, Yuanzhong;Liu, Honggao
关键词:feature variable selection; food safety; mid-infrared spectroscopy; species identification; traceability; wild boletus
-
Effect of drying temperature on composition of edible mushrooms: Characterization and assessment via HS-GC-MS and IR spectral based volatile profiling and chemometrics
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletus bainiugan; HS-SPME-GC-MS; VOCs; 2DCOS; Chemometrics; Quality estimation
-
A fast method for predicting adenosine content in porcini mushrooms using Fourier transform near-infrared spectroscopy combined with regression model
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Fourier transform near-infrared spectroscopy; Porcini mushrooms; Adenosine; Partial least squares regression