您好,欢迎访问云南省农业科学院 机构知识库!

Study on the Genetic Relationship of Panax Notoginseng and Its Wild Relatives Based on Fourier Translation Infrared Spectroscopy

文献类型: 外文期刊

作者: Li Yun 1 ; Wang Yuan-zhong 2 ; Yang Wei-ze 2 ; Yang Shao-bing 2 ; Zhang Jin-yu 1 ; Xu Fu-rong 1 ;

作者机构: 1.Yunnan Univ Tradit Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Peoples R China

2.Yunnan Acad Agr Sci, Inst Med Plants, Kunming 650200, Peoples R China

关键词: Fourier transform infrared spectroscopy;Panax notoginseng;Wild relatives;Genetic relationship;Germplasm resources

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2016 年 36 卷 8 期

页码:

收录情况: SCI

摘要: Wild relatives play a very important role in enriching germplasm resources and improving the quality and yield of cultivated species. In this paper, the genetic relationship between Panax notoginseng and its wild relatives has been investigated by using Fourier transform infrared (FTIR) spectroscopy in order to provide theoretical bases in the variety improvement of P. notoginseng as well as the development and utilization of germplasm resources. The FTIR spectra of P. notoginseng and its wild relatives (P. japonicus var. major, P. stipuleanatus, P. vietnamensis, P. japonicus var. bipinnatifidus) as well as Panax notoginsenosides were collected. The original infrared spectra of P. notoginseng and its wild relatives were pretreated by automatic baseline correction, smoothing, ordinate normalization and second derivative. The genetic relationship between P. notoginseng and its wild relatives has been studied together with the aid of principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA). By comparing the infrared spectra of P. notoginseng with that of panax notoginsenosides, some common peaks such as 3 400, 2 930, 1 635, 1 385, 1 075 and 927 cm(-1) has been found. It showed that the peak heights of P. notoginseng samples may relate with the content of panax notoginsenosides. The original infrared spectra of P. notoginseng are similar to its wild relatives and the absorption peaks of the functional groups of C-H, C=O, O-H, C-N and C-O were presented. There were some differences in the fingerprint region (1 800 similar to 500 cm(-1)) of the second derivative spectra of these five species samples. The characteristic absorption peaks such as 1 385 and 784 cm(-1) has an obviously differentiation. Then the fingerprint region of second derivative spectra is subjected to be analyzed by PCA and PLS-DA. By comparing the 3D score plots of these two methods, the classification result of PLS-DA is significantly better than PCA. In addition, the result of HCA which based on the six principal components of PLS-DA has shown that P. japonicus var. major and P. vienamensis have close relationship with P. notoginseng while P. stipuleanatus and P. japonicus var. bipinnatifidus are far from P. notoginseng. The use of Fourier transform infrared spectroscopy combined with chemometrics methods could effectively investigate the genetic relationship between P. notoginseng and its wild relatives. Furthermore, it could provide reference for the research of medicinal plants.

  • 相关文献

[1]Reduction, methylation, and translocation of arsenic in Panax notoginseng grown under field conditions in arsenic-contaminated soils. Ma, Jie,Mi, Yanhua,Li, Qiwan,Chen, Lu,Du, Lijuan,He, Lizhong,Ma, Jie,Lei, Mei.

[2]Common and Variation Peak Ratio Dual-Index Sequence Analysis of Vanillin-Sulfuric Acid Developing UV Fingerprint of Panax notoginseng. Zhong, Gui,Xiao, Yan-Bo,Zhong, Gui,Wang, Yuan-Zhong,Zhang, Ji,Zhao, Yan-Li,Zhang, Jin-Yu.

[3]Study on the Origin Identification and Saponins Content Prediction of Panax notoginseng by FTIR Combined with Chemometrics. Li Yun,Xu Fu-rong,Zhang Jin-yu,Li Yun,Zhang Jin-yu,Wang Yuan-zhong,Li Yun,Zhang Jin-yu,Wang Yuan-zhong. 2017

[4]Rapid Prediction Study of Total Flavonids Content in Panax notoginseng Using Infrared Spectroscopy Combined with Chemometrics. Li Yun,Zhang Ji,Wang Yuan-zhong,Zhang Jin-yu,Li Yun,Zhang Ji,Wang Yuan-zhong,Zhang Jin-yu,Li Yun,Xu Fu-rong,Zhang Jin-yu. 2017

[5]Discrimination of Panax Notoginseng from Different Regions by UV Spectra Characteristics Combined with Chemometric Method. Wang Yuan-zhong,Zhong Gui,Zhang Ji,Zhao Yan-li,Yang Tian-mei,Zhang Jin-yu,Zhong Gui. 2016

[6]Application of the Vanillin Sulfuric Acid Colorimetry-Ultraviolet Spectrometry on Quality Evaluation of Panax notoginseng. Ding Yong-li,Wang Yuan-zhong,Zhang Ji,Zhang Jin-yu,Jin Hang,Ding Yong-li,Zhang Qing-zhi,Zhang Jin-yu,Jin Hang. 2013

[7]FT-MIR and NIR spectral data fusion: a synergetic strategy for the geographical traceability of Panax notoginseng. Li, Yun,Zhang, Jin-Yu,Wang, Yuan-Zhong. 2018

[8]Illumina-based transcriptomic profiling of Panax notoginseng in response to arsenic stress. Liu, Yanfang,Mi, Yanhua,Zhang, Jianhua,Li, Qiwan,Chen, Lu. 2016

[9]APPLICATION OF SYNCHROTRON RADIATION X-RAY FLUORESCENCE TO INVESTIGATE THE DISTRIBUTION OF ARSENIC IN DIFFERENT ORGANS OF PANAX NOTOGINSENG. Chen, L.,Mi, Y.,Yin, B.,He, L.,Li, Q.,Wan, X.,Yuan, Z.. 2017

[10]Study on the Discrimination of FTIR Spectroscopy of Gentiana Rigescens with Different Harvest Time. Shen Yun-xia,Zhao Yan-li,Zhang Ji,Jin Hang,Wang Yuan-zhong,Shen Yun-xia. 2016

[11]Study on the Discrimination of Gentiana Rigescens with Different Processing Methods by Using FTIR Spectroscopy. Shen Yun-xia,Zhang Qing-zhi,Shen Yun-xia,Zhao Yan-li,Zhang Ji,Wang Yuan-zhong. 2016

[12]Study on Different Parts of Wild and Cultivated Gentiana Rigescens with Fourier Transform Infrared Spectroscopy. Shen Yun-xia,Zhang Qing-zhi,Shen Yun-xia,Zhao Yan-li,Zhang Ji,Zuo Zhi-tian,Wang Yuan-zhong. 2016

[13]Study on Gentiana Rigescens with Silvomedicinal and Agriosivomedicinal Systems with FTIR Spectroscopy. Shen Yun-xia,Zhao Yan-li,Zhang Ji,Jin Hang,Wang Yuan-zhong,Shen Yun-xia. 2016

作者其他论文 更多>>