您好,欢迎访问云南省农业科学院 机构知识库!

Study on the Discrimination of FTIR Spectroscopy of Gentiana Rigescens with Different Harvest Time

文献类型: 外文期刊

作者: Shen Yun-xia 1 ; Zhao Yan-li 1 ; Zhang Ji 1 ; Jin Hang 1 ; Wang Yuan-zhong 1 ;

作者机构: 1.Yunnan Acad Agr Sci, Inst Med Plants, Kunming 650200, Peoples R China

2.Yunnan Univ Tradit Chinese Med, Coll Chinese Mat Medica, Kunming 650500, Peoples R China

关键词: Gentiana rigescens;Different harvest seasons;Fourier transform infrared spectroscopy;Principal component analysis;Partial least square discriminant analysis

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2016 年 36 卷 5 期

页码:

收录情况: SCI

摘要: The harvest time of traditional Chinese medicine (TCM) is a very essential part for the production and quality of TCM which is the prerequisite for safe and effective clinical use of TCM. It is of great importance to carry out the research of timely harvest time of TCM. With Fourier transform infrared spectroscopy (FTIR) to study harvest time of Seventy-two Gentiana Rigescens samples. First derivative, second derivative, standard normal variate, multiplicative scatter correction and Savitaky-Golay(15, 3) smoothing of all original spectra were pretreated with TQ8. 0 software. Samples were divided into calibration set and prediction set at the ratio of 3 : 1. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) model were established. The result indicated that after removing noise spectrum, the spectra range was from 1 800 to 600 cm(-1), the method SNV combined with SD and SG present the best result of spectra pretreatment. The contribution rates of first three principal components were 92. 47% with PCA. Small differences were found for the samples harvested in May, September and October. Same spectrum range was chosen and PLS-DA was applied to establish the model. The R-2 and RMSEE were 0. 967 8, 0. 086 0, respectively, and the prediction accuracy is 100%. The methods of PCA and PLS-DA have good ability to classify and identify different harvest time of Gentiana Rigescens. It provided a basis for the identification of different harvest time of TCM.

  • 相关文献

[1]Study on the Discrimination of Gentiana Rigescens with Different Processing Methods by Using FTIR Spectroscopy. Shen Yun-xia,Zhang Qing-zhi,Shen Yun-xia,Zhao Yan-li,Zhang Ji,Wang Yuan-zhong. 2016

[2]Study on Gentiana Rigescens with Silvomedicinal and Agriosivomedicinal Systems with FTIR Spectroscopy. Shen Yun-xia,Zhao Yan-li,Zhang Ji,Jin Hang,Wang Yuan-zhong,Shen Yun-xia. 2016

[3]Study on Different Parts of Wild and Cultivated Gentiana Rigescens with Fourier Transform Infrared Spectroscopy. Shen Yun-xia,Zhang Qing-zhi,Shen Yun-xia,Zhao Yan-li,Zhang Ji,Zuo Zhi-tian,Wang Yuan-zhong. 2016

[4]Comprehensive Quality Assessment Based Specific Chemical Profiles for Geographic and Tissue Variation in Gentiana rigescens Using HPLC and FTIR Method Combined with Principal Component Analysis. Li, Jie,Zhang, Ji,Zhao, Yan-Li,Wang, Yuan-Zhang,Li, Jie,Huang, Heng-Yu. 2017

[5]Evaluation of Mineral Elements in Gentiana rigescens in China. Zhao, Yan-Li,Zhang, Ji,Zhang, Jin-Yu,Wang, Yuan-Zhong,Jin, Hang,Yuan, Tian-Jun,Shen, Tao.

[6]Study on the Genetic Relationship of Panax Notoginseng and Its Wild Relatives Based on Fourier Translation Infrared Spectroscopy. Li Yun,Zhang Jin-yu,Xu Fu-rong,Li Yun,Wang Yuan-zhong,Yang Wei-ze,Yang Shao-bing,Zhang Jin-yu. 2016

[7]Determination of mineral elements in Gentiana rigescens from different zones of Yunnan, China. Zhang, Jinyu,Yuan, Tianjun,Wang, Yuanzhong,Zhao, Yanli,Zhang, Ji,Jin, Hang,Yuan, Tianjun.

[8]Determination of Iridoids in Gentiana rigescens by Infrared Spectroscopy and Multivariate Analysis. Qi, Lu-Ming,Qi, Lu-Ming,Zhang, Ji,Zuo, Zhi-Tian,Zhao, Yan-Li,Wang, Yuan-Zhong,Hang, Jin,Qi, Lu-Ming,Zhang, Ji,Zuo, Zhi-Tian,Zhao, Yan-Li,Wang, Yuan-Zhong,Hang, Jin.

[9]Characterization of Gentiana rigescens by Ultraviolet-Visible and Infrared Spectroscopies with Chemometrics. Qi, LuMing,Qi, LuMing,Zhang, Ji,Zhao, YanLi,Zuo, ZhiTian,Wang, Yuan-Zhong,Jin, Hang.

[10]Optimization of ultrasonic extraction by response surface methodology combined with ultrafast liquid chromatography-ultraviolet method for determination of four iridoids in Gentiana rigescens. Pan, Yu,Zhang, Ji,Zuo, Zhi-Tian,Jin, Hang,Wang, Yuan-Zhong,Li, Wan-Yi,Pan, Yu,Shen, Tao. 2015

[11]Investigation of metabolites accumulation in medical plant Gentiana rigescens during different growing stage using LC-MS/MS and FT-IR. Pan, Yu,Zhang, Ji,Zhao, Yan-Li,Wang, Yuan-Zhong,Pan, Yu,Huang, Heng-Yu. 2015

[12]De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens. Zhang, Xiaodong,Li, Caixia,Allan, Andrew C.,Wang, Yuanzhong,Yao, Qiuyang. 2015

[13]The Common and Variation Peak Ratio Dual Index Sequence Analysis in UV Fingerprint Spectra of Gentiana Rigescens. Yuan Tian-jun,Wang Yuan-zhong,Zhao Yan-li,Zhang Ji,Jin Hang,Zhang Jin-yu,Yuan Tian-jun. 2011

[14]Evaluation and quantitative analysis of different growth periods of herb-arbor intercropping systems using HPLC and UV-vis methods coupled with chemometrics. Chu, Bo-wen,Zhang, Ji,Li, Zhi-min,Zhao, Yan-li,Zuo, Zhi-tian,Wang, Yuan-zhong,Li, Wan-yi,Chu, Bo-wen,Zhang, Ji,Li, Zhi-min,Zhao, Yan-li,Zuo, Zhi-tian,Wang, Yuan-zhong,Li, Wan-yi,Li, Wan-yi.

[15]Quality Assessment of Gentiana rigescens from Different Geographical Origins Using FT-IR Spectroscopy Combined with HPLC. Wu, Zhe,Zhao, Yanli,Zhang, Ji,Wang, Yuanzhong,Wu, Zhe,Zhao, Yanli,Zhang, Ji,Wang, Yuanzhong,Wu, Zhe.

[16]Multivariate analyses of major and trace elements in 19 species of herbs consumed in Yunnan, China. Dong, Xiao-Lei,Dong, Xiao-Lei,Zhang, Ji,Zhao, Yan-Li,Zuo, Zhi-Tian,Wang, Yuan-Zhong,Zhang, Jin-Yu.

[17]Simultaneous determination of six index constituents and comparative analysis of four ethnomedicines from genus Gentiana using a UPLC-UV-MS method. Pan, Yu,Zhang, Ji,Zhao, Yan-Li,Wang, Yuan-Zhong,Li, Wan-Yi,Pan, Yu,Li, Wan-Yi,Shen, Tao.

[18]Rapid Identification of Dendrobium Plants Based on Near Infrared Diffuse Reflection Spectroscopy. Ding Chang-chun,Xia Nian-he,Ding Chang-chun,Ding Chang-chun,Fang Xiang-jing,Li Gui-xiang,Zhao Yan-li,Wang Yuan-zhong,Li Tao. 2014

[19]FTIR Spectroscopic Study of Broad Bean Diseased Leaves. Li Zhi-yong,Liu Gang,Li Lun,Ou Quan-hong,Zhao Xing-xiang,Zhang Li,Zhou Xiang-ping,Wang Lu-xiang. 2012

作者其他论文 更多>>