您好,欢迎访问云南省农业科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
作者:张钰(精确检索)
作者:李杰庆(精确检索)
作者:李涛(精确检索)
作者:刘鸿高(精确检索)
作者:王元忠(精确检索)
4条记录
17种分类算法在牛肝菌种类鉴别研究中的应用

光谱学与光谱分析 2019 EI SCI 北大核心 CSCD

摘要:由于部分毒菌与野生食用菌形态和生物学特征相似,农民仅凭经验采集,难免将两者混淆,从而导致严重的食品安全事故。云南省作为国内野生食用菌产量最高、出口量最大的省份,野生食用菌产业发展为云南农村经济发展做出了突出贡献,对不同种类野生食用菌进行快速鉴别,有利于野生食用菌产业的健康发展;分析食用菌亲缘关系,对食用菌育种工作具有积极作用。七种牛肝菌样品,采自云南及周边七个产地,利用FTIR光谱仪分别采集菌柄和菌盖红外指纹图谱,基于低级与中级数据融合策略,将预处理后的菌柄和菌盖FTIR光谱数据进行融合,结合Decision Trees,Discriminant Analysis,Logistic Regression Classifiers,Support Vector Machines,Nearest Neighbor Classifiers和Ensemble Classifiers中的17种算法,分别建立菌柄、菌盖、低级数据融合和中级数据融合模型,每个分类模型连续进行10次运算,通过比较训练集分类正确率平均值,确定牛肝菌种类鉴别最佳分类算法。中级数据融合数据集进行系统聚类分析(HCA),对推测不同种类牛肝菌样品的亲缘关系进行鉴定。结果显示:(1)菌柄、菌盖和低级数据融合模型最佳分类算法均为Linear Discriminant,训练集分类正确率分别为92.8%,96.4%和97.6%。中级数据融合模型最佳分类算法为Subspace Discriminant,训练集分类正确率为100%;(2)菌柄、菌盖、低级数据融合和中级数据融合最佳分类模型,全部样品分类正确率平均值分别为93.61%,95.54%,96.99%和99.88%,中级数据融合模型优于其他三种模型,表明中级数据模型可以将相似度较高的样品区分开,且减少了产地对种类鉴别的影响;(3)中级数据融合模型数据集进行HCA,华丽牛肝菌和美味牛肝菌聚类距离最小,表明这两种牛肝菌化学信息较相似,亲缘关系较近;(4)华丽牛肝菌与皱盖疣柄牛肝菌聚类临界值距离最大,表明样品化学信息差异较大,亲缘关系较远。综上表明,基于中级融合策略将不同部位FTIR光谱数据融合,结合Subspace Discriminant与HCA,可以准确鉴别不同种类牛肝菌和快速推测样品亲缘关系,可作为野生食用菌种类鉴别与亲缘关系推测的一种新方法。

关键词: 牛肝菌 FTIR 种类鉴别 不同部位 数据融合

 全文链接 请求原文
光谱数据融合对绒柄牛肝菌产地溯源研究

光谱学与光谱分析 2018 EI 北大核心 CSCD

摘要:由于国内外食品市场准入制度和溯源体系不完善,销售商乱用虚假标签等现象的发生,使得食品安全形势愈发严峻。为了保障野生食用菌的安全性,保护云南高原特色农业品牌战略,亟需建立快速准确的产地溯源方法。通过采集云南及其周边8个产地、79个绒柄牛肝菌子实体的紫外-可见吸收光谱(UV-Vis)与傅里叶变换红外光谱(FTIR),采用多元散射校正(MSC)、标准正态变换(SNV)、二阶导数(2D)、平滑(SG)等算法对原始光谱进行预处理。基于低级与中级数据融合策略,将预处理后的UV-Vis与FTIR光谱信息进行融合,结合偏最小二乘判别分析(PLS-DA)与支持向量机(SVM),建立牛肝菌产地鉴别模型,确定最佳产地溯源方法。对光谱融合数据进行系统聚类分析(HCA),探讨不同产地样品整体化学信息的差异性与相关性。结果显示:(1)采用MSC+2D和SNV+2D对UV-Vis与FTIR光谱进行预处理,R~2Y与Q~2最大,分别为61.58%,95.09%和50.85%,82.16%,表明MSC+2D与SNV+2D为UV-Vis与FTIR光谱的最佳预处理方法;(2)基于UV-Vis,FTIR,低级与中级数据融合建立的PLS-DA与SVM模型,样品分类错误总数分别为24,6,2,2和6,1,1,0,表明数据融合模型分类效果优于单一UV-Vis与FTIR模型;(3)中级数据融合模型中,SVM对所有样品的分类全部正确,PLS-DA的分类错误总数为2,表明基于SVM的中级数据融合策略分类效果优于PLS-DA;(4)低级和中级数据融合HCA模型,分别有4和1个样品不能与同一类区域样品聚为一类,表明中级数据融合优于低级数据融合;由中级数据融合HCA图可知,同一产地样品聚类距离小于不同产地之间聚类距离,表明同一产地样品整体化学成分类较相似,且同一产地不同采集地点的差异小于不同产地之间的差异。采用UV-Vis与FTIR光谱中级数据融合策略结合SVM,能够对不同产地来源牛肝菌样品进行准确鉴别,为野生食用菌产地溯源研究提供一种新方法。

关键词: 产地溯源 数据融合 绒柄牛肝菌 紫外-可见吸收光谱 傅里叶变换红外光谱

 全文链接 请求原文
不同部位矿质元素与红外光谱数据融合对美味牛肝菌产地溯源研究

光谱学与光谱分析 2018 EI SCI 北大核心 CSCD

摘要:野生食用菌产地溯源研究中,采用单一有机成分或矿质元素指纹存在一定局限性。利用不同指纹分析技术的互补性与协同性,将不同部位与类型的化学信息进行融合,探讨此方法对野生食用菌产地溯源的可行性,以期为野生食用菌溯源提供新的思路与科学依据。通过测定云南7个产地、124个美味牛肝菌(菌柄、菌盖)中15种矿质元素的含量,以及子实体傅里叶变换红外光谱(FTIR)。标准正态变换(SNV)、二阶导数(2D)等算法对原始光谱进行预处理。基于低级与中级数据融合策略,将预处理后的FTIR光谱与菌柄、菌盖矿质元素数据进行融合,结合支持向量机(SVM)分别建立菌柄、菌盖、FTIR、低级数据融合(菌柄+菌盖,菌柄+菌盖+FTIR)与中级数据融合(菌柄+菌盖+FTIR)判别模型;分析比较模型参数,确定快速甄别美味牛肝菌产地的可靠方法。结果显示:(1)菌盖中Cd,Cr,Cu,Li,Mg,Na,P和Zn元素平均含量高于菌柄,Ba,Ca,Co,Ni,Rb,Sr和V元素在菌柄中平均含量高于菌盖。美味牛肝菌中人体必需矿质元素Ca,Cu,Mg,P和Zn平均含量远高于小麦、水稻干品和新鲜蔬菜,与动物干制品含量相似;(2)FTIR光谱数据最佳预处理方法为3D+SNV,其Q2和R2 Y分别为76.64%,88.91%;(3)菌柄、菌盖、FTIR、低级数据融合与中级数据融合SVM模型,c值分别为8 192,4 096,1.414 2,11.313 7,1和0.7071 1,菌柄和菌盖模型c值较大,表明采用单一菌柄或菌盖矿质元素含量数据,SVM训练存在过拟合风险,判别效果较差;(4)FTIR、低级数据融合和中级数据融合SVM模型,样品分类错误总数分别为7,9,7和0,中级数据融合(菌柄+菌盖+FTIR)模型样品分类正确率最高。表明基于中级融合策略将不同部位矿物元素和子实体FTIR光谱数据融合,可作为野生食用菌产地溯源的一种有效方法。

关键词: 产地溯源 美味牛肝菌 矿质元素 FTIR 不同部位 数据融合

 全文链接 请求原文
不同储藏年限绒柄牛肝菌紫外&红外光谱数据融合鉴别研究

现代食品科技 2018 北大核心

摘要:野生食用菌干品长时间储藏会引起微生物增殖、物理及化学变化,影响其商品品质,为保证其质量安全,亟需建立快速有效的方法,鉴别不同储藏年限野生食用菌。本研究采集5个储藏年限,77个绒柄牛肝菌子实体的紫外(UV)与傅里叶变换红外(FT-IR)光谱,采用卷积平滑(SG)、二阶导数(2-D)、标准正态变量(SNV)等方法对光谱进行预处理,结合偏最小二乘判别分析(PLS-DA),建立UV、FT-IR、低级和中级数据融合模型。结果显示:UV与FT-IR光谱最佳预处理分别为SG+2-D和SG+2-D+SNV;UV、FT-IR、低级和中级数据融合模型,总样品分类错误数分别为10、6、4、3,且中级数据融合的R2cal平均值最接近于1、RMSECV平均值最小,表明中级数据融合分类效果,优于UV、FT-IR和低级数据融合。采用UV与FT-IR中级数据融合策略结合PLS-DA,能够准确鉴别不同储藏年限牛肝菌样品,为野生食用菌品质评价提供一种新思路。

关键词: 数据融合 绒柄牛肝菌 储藏年限 紫外光谱 红外光谱

 全文链接 请求原文

首页上一页1下一页尾页