您好,欢迎访问云南省农业科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
关键词:UV-Vis(模糊匹配)
5条记录
数据融合快速鉴别9种野生食用牛肝菌

菌物学报 2019 北大核心 CSCD

摘要:食用菌种类与产地品质存在差异,加上因牟利产生的混杂销售现象,严重制约了高原特色农产品来源鉴别、种质资源评价和深入挖掘利用。本试验融合牛肝菌光谱信息建立支持向量机(SVM)模型,寻找最佳的样品种类鉴别方法。结果显示:(1)元素标准曲线R~2>0.999,RSD<5.0%,标准物回收率94%–106%,测定方法可靠;(2)样品含Ca、Na等人体必需元素,但Cd含量超标;(3)脂肪酸、蛋白质等化合物和Ni、Co等矿质元素对种类鉴别贡献最大;(4)中级数据融合优于低级数据融合,优于单一光谱数据模型。数据融合结合化学计量学可实现样品种类快速准确鉴别,对食用菌市场监督、种质资源评价及挖掘利用具有理论参考意义。

关键词: 牛肝菌 傅里叶变换红外光谱 紫外可见光谱 电感耦合等离子体原子发射光谱 数据融合 种类鉴别

 全文链接 请求原文
FTIR结合SVR对三七总多糖含量快速预测

光谱学与光谱分析 2018 EI SCI 北大核心 CSCD

摘要:对中药进行快速质量控制,从整体层面反映中药的安全性与有效性具有重要意义。通过硫酸-苯酚显色反应测定三七总多糖含量,傅里叶变换红外光谱(FTIR)结合支持向量机回归(SVR)建立三七总多糖含量预测模型,以期为三七提供快速准确的质控方法。采集云南省12个产地60个三七样品的红外光谱,紫外分光光度法(UV-Vis)检测样品中总多糖含量。红外光谱经过二阶导数(2D)、正交信号校正(OSC)、小波变换(WT)和变量投影重要性(VIP)筛选等数据优化处理。SPXY算法将所有样本按2∶1的比例划分为训练集与预测集。训练集数据用于建立SVR预测模型,网格式搜索、遗传算法(GA)和粒子群优化算法(PSO)对SVR预测模型进行参数优化,预测集进一步对SVR模型的预测能力进行验证。结果显示:(1)葡萄糖标准品与三七总多糖在490nm处存在最大共有吸收峰,490nm可作为三七总多糖检测的定量波长;(2)文山丘北、曲靖师宗及红河蒙自等产地的三七总多糖含量较高,平均含量在25mg·g~(-1)以上;(3)分析3种参数优化模型的校正均方根误差(RMSEE)与预测均方根误差(RMSEP),与PSO优化模型相比,网格式搜索优化模型欠学习,GA优化模型过学习;(4)PSO-SVR模型对预测集数据预测效果最好,RMSEP=3.120 6,R_(pre)~2=83.13%,预测值与紫外检测值接近。表明FTIR结合PSO-SVR模型能够对三七中总多糖含量进行快速准确的预测,为保证三七稳定、安全与有效用药提供数据。

关键词: 紫外-可见分光光度法 傅里叶变换红外光谱 三七 总多糖 含量预测 整体性质量控制 支持向量机回归

 全文链接 请求原文
多源异构光谱信息融合的食用牛肝菌鉴别方法

光谱学与光谱分析 2018 EI SCI 北大核心 CSCD

摘要:牛肝菌营养丰富,味道鲜美,备受各国消费者青睐。因种间差异和环境因素的多层次影响,不同种类及产地牛肝菌品质参差不齐。目前,利益驱动导致商家在牛肝菌销售过程中以次充好、以假乱真的行为扰乱了食用菌市场,不仅给消费者带来健康风险,也制约了牛肝菌的国际化贸易。采用多源异构信息融合策略对牛肝菌种类与产地进行鉴别,以期为追溯食用菌来源以及正确评价其品质提供一种快速有效的解决方法。试验样品灰褐牛肝菌(Boletus griseus)、栗色牛肝菌(B. umbriniporus)、美味牛肝菌(B. edulis)、皱盖疣柄牛肝菌(Leccinum rugosicepes)和绒柄牛肝菌(B. tomentipes)五种牛肝菌科(Boletaceae)真菌子实体采于云南省保山市、昆明市、玉溪市与红河州。采用傅里叶变换红外光谱仪(FTIR)和紫外可见分光光度计(UV-Vis)采集样品信息。Kennard-Stone算法将样品原始数据分为校正集和验证集。校正集基于FTIR、UV-Vis、低级、中级与高级数据融合建立偏最小二乘判别分析(PLS-DA)模型,其中决定系数(R2cal)、预测能力Q2、校正均方根误差(RMSEE)和交叉验证均方差(RMSECV)用来评价模型鲁棒性。研究结果显示:(1)不同种类及产地牛肝菌FTIR和UV-Vis吸收峰的峰位置、峰形和峰数相似,而吸收强度存有差异,表明牛肝菌所含化学成分相似,但含量有一定差别;(2)PLS-DA模型二维散点图可以看出,中级融合比低级融合能更好的鉴别样品种类及产地;(3)各模型中,中级融合模型具有更大的Q2和最小RMSECV,模型鲁棒性最强;(4)验证集样本用来验证模型泛化能力,FTIR、UV-Vis、低级融合、中级融合及高级融合模型样品种类鉴别正确率分别为92. 86%,35. 71%,97. 62%,100%和95. 23%;产地鉴别正确率分别为71. 43%,61. 90%,61. 90%,97. 62%和76. 19%。表明多源异构信息融合在一定程度上优于独立模型,其中,中级数据融合种类鉴别正确率100%,产地鉴别正确率97. 62%,模型具有更优的鉴别效果和泛化能力。FTIR和UV-Vis结合中级数据融合策略能实现牛肝菌种类快速精确鉴别,产地快速有效鉴别,可作为食用菌来源追溯以及品质评价的一种新方法。

关键词: 牛肝菌 FTIR UV-Vis 多源异构信息融合 种类及产地鉴别

 全文链接 请求原文
红外光谱结合化学计量学对三七总黄酮含量的快速预测研究

光谱学与光谱分析 2017 EI SCI 北大核心 CSCD

摘要:中药产地及生长环境的改变会对其次生代谢产物、质量产生整体性影响。近年来,三七产地从道地产地文山扩展到周边县市。为保证三七质量,中国药典以三种皂苷含量为指标对三七进行质量控制,指标较为单一,难以对三七质量进行整体性评价。通过紫外-可见分光光度法测定三七总黄酮含量,傅里叶变换红外光谱结合化学计量学建立三七总黄酮含量快速预测模型;为三七快速及整体性质量控制提供研究基础。采集云南省12个产地96个三七样品的紫外与红外光谱。记录样品紫外光谱268nm处吸光度,结合芦丁标准品线性方程计算样品中总黄酮含量。预处理红外光谱数据采用一阶(1D)、二阶导数(2D)结合SavitskyGolay平滑(7点、9点和11点)处理,Kennard-stone算法将96个个体分为2/3训练集与1/3预测集。训练集数据用于正交信号校正偏最小二乘回归(OSC-PLSR)模型的建立,1/7交叉验证用于筛选最佳主成分数,预测集数据对OSC-PLSR模型预测能力进行验证。结果显示:(1)标准品芦丁在268nm处吸光度与浓度相关系数r=0.999 7,线性浓度范围为5.6~72.0μg·mL~(-1),线性关系良好;(2)道地产区文山州3个产地以及曲靖市罗平、昆明市石林等产地三七总黄酮含量较高,平均含量高于7mg·g-1;(3)相同点数SavitskyGolay平滑之后,二阶导数模型预测能力优于一阶导数,不同处理模型预测能力具有较大差别;(4)预测模型中,2D+SG 7+OSC-PLSR(R2pre=0.976 1,RMSEP=0.325 2)与2D+SG 11+OSC-PLSR(R2pre=0.946 9,RMSEP=0.382 0)模型预测效果较好,RMSEP均小于0.4,预测值与检测值接近。傅里叶变换红外光谱结合OSC-PLSR能够对12个产地三七中总黄酮含量进行快速准确的预测,为三七整体性质量控制提供一种快速、简便、有效的检测方法。

关键词: 紫外-可见分光光度法 傅里叶变换红外光谱 三七 总黄酮 含量预测 质量控制

 全文链接 请求原文
UV-Vis结合HPLC FP对不同采收期傣药灯台叶的鉴别及品质研究

光谱学与光谱分析 2016 EI SCI 北大核心 CSCD

摘要:建立不同采收期灯台叶紫外-可见光谱指纹图谱及HPLC指纹图谱,结合主成分分析、聚类分析对不同采收期灯台叶进行快速鉴别和品质评价,确定最佳采收期,推动傣药现代化发展进程。通过单因素实验确定灯台叶紫外-可见光谱的最佳提取条件,采集12个月份灯台叶紫外光谱数据,平行3次,扣除背景8点平滑后倒入SIMCA-P+11.5进行主成分分析,以前三个主成分三维得分图快速鉴别不同采收期。Agilent ZORBAX Eclipse XDB C18(250×4.6mm,5μm)色谱柱,以乙腈(B)-0.1%甲酸水(A)为流动相,梯度洗脱(0~5min,5%B;5~35min,5%B→26%B;35~40min,26%B→56%B),流速1mL·min~(-1),进样量7μL,柱温30℃,检测波长287nm。不同采收期灯台叶紫外-可见光谱根据吸收峰位置及变化的幅度可以将光谱分为三段,第一段为235~400nm,第二段为400~500nm,第三段为500~800nm。第一段中吸收峰数目最多,主要集中在270,287和325nm,吸光度及其变化幅度最大,体现出不同月份光谱图的指纹特征。第二段吸收峰较少主要分布在410nm和464nm附近,吸光度及其变化较第一段减小。第三段图谱在665nm处均有一个较大吸收峰,吸光度无明显差异。将UV-Vis光谱数据进行主成分分析,不同月份样品在主成分得分图中离散分布,同一月份样品相对集中,可以将不同月份样品鉴别开。HPLC指纹图谱结合聚类分析可将不同采收期样品分为Ⅲ类,第Ⅰ类为3,4,5和7月份,第Ⅱ类为6,8和9月份,第Ⅲ类为10,11,12,1及2月。结合共有峰面积可以看出同一类样品化学成分含量相近,不同类之间差异较明显,第Ⅲ类样品化学成分含量最高。UV-Vis FP,HPLC FP结合主成分分析和聚类分析能快速鉴别不同采收期灯台叶并对其进行品质评价。灯台叶最佳采收期为10月至次年2月,即傣历中的冷季。

关键词: 紫外-可见光谱 HPLC指纹图谱 傣药 灯台叶 采收期 鉴别 质量评价

 全文链接 请求原文

首页上一页1下一页尾页