您好,欢迎访问云南省农业科学院 机构知识库!

Long-term cattle manure addition enhances soil-available phosphorus fractions in subtropical open-field rotated vegetable systems

文献类型: 外文期刊

作者: Mao, Yanting 1 ; Hu, Wei 3 ; Li, Yongmei 4 ; Li, Yuan 5 ; Lei, Baokun 2 ; Zheng, Yi 1 ;

作者机构: 1.Yunnan Agr Univ, Fac Plant Protect, Kunming, Peoples R China

2.Yunnan Acad Agr Sci YAAS, Inst Agr Environm & Resources, Kunming, Peoples R China

3.New Zealand Inst Plant & Food Res Ltd, Canterbury Agr & Sci Ctr, Christchurch, New Zealand

4.Yunnan Agr Univ, Fac Resource & Environm, Kunming, Peoples R China

5.Lanzhou Univ, Coll Pastoral Agr Sci & Technol, State Key Lab Herbage Improvement & Grassland Agro, Natl Field Sci Observat & Res Stn Grassland Agroec, Lanzhou, Peoples R China

6.Yunnan Open Univ, Dept President Off, Kunming, Peoples R China

关键词: phosphorus fractions; phosphate use efficiency; manure; vegetable yield; subtropical

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.6; 五年影响因子:6.8 )

ISSN: 1664-462X

年卷期: 2023 年 14 卷

页码:

收录情况: SCI

摘要: IntroductionEvaluation of the changes in phosphorus (P) fractions (various P forms) and their availability at different soil layers is critical for enhancing P resource use efficiency, mitigating subsequent environmental pollution, and establishing a suitable manure application strategy. However, changes in P fractions at different soil layers in response to cattle manure (M), as well as a combined cattle manure and chemical fertilizer application (M+F), remain unclear in open-field vegetable systems. If the amount of annual P input remains the same, identifying which treatment would cause a higher phosphate fertilizer use efficiency (PUE) and vegetable yield while simultaneously reducing the P surplus is especially warranted. MethodsBased on a long-term manure experiment that started in 2008, we used a modified P fractionation scheme to analyze P fractions at two soil layers for three treatments (M, M+F, and control without fertilizer application) in an open-field cabbage (Brassica oleracea) and lettuce (Lactuca sativa) system, and assessed the PUE and accumulated P surplus. ResultsThe concentrations of the soil P fractions were higher in the 0-20-cm soil layer compared to the 20-40-cm layer, except for organic P (Po) and residual-P. M application significantly increased the inorganic P (Pi) (by 8.92%-72.26%) and the Po content (by 5.01%-61.23%) at the two soil layers. Compared with the control and M+F treatments, M significantly increased residual-P, Resin-P, and NaHCO3-Pi at both soil layers (by 31.9%-32.95%, 68.40%-72.60%, and 48.22%-61.04%), whereas NaOH-Pi and HCl-Pi at 0-20 cm were positively correlated with available P. Soil moderately labile-P was the predominant P component in the two soil layers (accounting for 59%-70%). With the same annual P input amount, M+CF created the highest vegetable yield (117.86 t ha-1), and PUE (37.88%) and M created the highest accumulated P surplus (128.80 kg ha(-1)yr(-1)). DiscussionCollectively, a combined manure-chemical fertilizer application has great potential to yield a long-term positive outcome both in terms of vegetable productivity and environmental health in open-field vegetable systems. This highlights the methods' benefits as a sustainable practice in subtropical vegetable systems. Specific attention should be given to a P balance to avoid excessive P input if a rational strategy for manure application is to be attained. This is especially the case for stem vegetables that require manure application and decreases the environmental risk of P loss in vegetable systems.

  • 相关文献
作者其他论文 更多>>