您好,欢迎访问云南省农业科学院 机构知识库!

Effects of Calcium and Calmodulin Antagonists on Chilling Stress-Induced Proline Accumulation in Jatropha curcas L.

文献类型: 外文期刊

作者: Yang, Shuang-Long 1 ; Lan, Shan-Shan 2 ; Deng, Feng-Fei 1 ; Gong, Ming 1 ;

作者机构: 1.Yunnan Normal Univ, Engn Res Ctr Sustainable Dev & Utilizat Biomass E, Key Lab Biomass Energy & Environm Biotechnol, Sch Life Sci,Minist Educ, Kunming 650092, Peoples R China

2.Yunnan Acad Agr Sci, Inst Agr Qual Stand & Testing Tech, Kunming 650223, Peoples R China

关键词: Calcium;Calmodulin antagonists;Proline biosynthesis and degradation;Chilling stress;Chilling tolerance;Jatropha curcas

期刊名称:JOURNAL OF PLANT GROWTH REGULATION ( 影响因子:4.169; 五年影响因子:4.038 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Regulation of proline accumulation in plants under chilling stress remains unclear. In this paper, we treated Jatropha curcas seedlings under chilling stress with exogenous calcium chloride (CaCl2), the plasma membrane Ca2+-channel blocker lanthanum chloride (LaCl3), calmodulin antagonists, chlorpromazine (CPZ), and trifluoperazine (TFP) and investigated the effects of calcium and calmodulin (CaM) on proline accumulation and chilling tolerance. The results showed that CaCl2 treatment significantly enhanced chilling stress-induced proline accumulation. CaCl2 also induced an almost immediate and rapid increase of Delta 1-pyrroline-5-carboxylate synthetase (P5CS) and glutamate dehydrogenase activities, the key enzymes in the glutamate pathway of proline biosynthesis, and up-regulated P5CS expression, but it decreased the activity of proline dehydrogenase (ProDH), a key enzyme of proline degradation, and inhibited ProDH expression. Treatment with LaCl3, CPZ, and TFP exhibited the opposite effects to those by CaCl2 treatment. Moreover, CaCl2, LaCl3, CPZ, and TFP had little effect on the activities of ornithine aminotransferase and arginase, the key enzymes in the ornithine pathway of proline biosynthesis. These results indicated that Ca2+-CaM might be involved in signal transduction events, leading to proline accumulation in J. curcas seedlings under chilling stress, and that Ca2+-induced proline accumulation is a combined result of the activation of the glutamate pathways of proline biosynthesis and the simultaneous inhibition of the proline degradation pathway. In addition, CaCl2 treatment increased tissue vitality, decreased the content of the lipid peroxidation product malondialdehyde (MDA), and alleviated electrolyte leakage in J. curcas seedlings under chilling stress, indicating that exogenous Ca2+ can enhance chilling tolerance, and proline might be a key factor in this increased chilling tolerance.

  • 相关文献

[1]Genetic variation and phylogenetic relationship analysis of Jatropha curcas L. inferred from nrDNA ITS sequences. Guo, Guo-Ye,Chen, Fang,Shi, Xiao-Dong,Tian, Yin-Shuai,Guo, Guo-Ye,Yu, Mao-Qun,Han, Xue-Qin,Yuan, Li-Chun,Zhang, Ying.

[2]Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners. Zhang, Mengru,Gong, Ming,Yang, Yumei,Zou, Zhurong,Li, Xujuan,Wang, Haibo.

[3]IMPROVEMENT ON THE THERMOSTABILITY AND ACTIVITY OF APX1 FROM ENERGY PLANT JATROPHA CURCAS L. BY HYPER-ACIDIC FUSION PARTNERS. Zhang, Mengru,Yang, Yumei,Li, Xujuan,Wang, Haibo,Yang, Shuanglong,Wang, Shasha,Gong, Ming,Zou, Zhurong,Li, Xujuan,Wang, Haibo. 2014

[4]Genotype x environment interactions for chilling tolerance of rice recombinant inbred lines under different low temperature environments. Jiang, Wenzhu,Lee, Joohyun,Chu, Sang-Ho,Ham, Tae-Ho,Woo, Mi-Ok,Cho, Young-Il,Koh, Hee-Jong,Jiang, Wenzhu,Lee, Joohyun,Chu, Sang-Ho,Ham, Tae-Ho,Woo, Mi-Ok,Cho, Young-Il,Koh, Hee-Jong,Chin, Joong-Hyoun,Han, Longzhi,Xuan, Yingshi,Yuan, Donglin,Xu, Furong,Dai, Luyuan,Yea, Jong-Doo.

作者其他论文 更多>>