您好,欢迎访问云南省农业科学院 机构知识库!

Potential distribution and ecological impacts of Acmella radicans (Jacquin) RK Jansen (a new Yunnan invasive species record) in China

文献类型: 外文期刊

作者: Shen, Shicai 1 ; Zheng, Fengping 1 ; Zhang, Wei 4 ; Xu, Gaofeng 1 ; Li, Diyu 1 ; Yang, Shaosong 1 ; Jin, Guimei 1 ; Clements, David Roy 5 ; Nikkel, Emma 6 ; Chen, Aidong 1 ; Cui, Yuchen 1 ; Fan, Zewen 1 ; Yin, Lun 8 ; Zhang, Fudou 1 ;

作者机构: 1.Yunnan Acad Agr Sci, Agr Environm & Resource Res Inst, Key Lab Prevent & Control Biol Invas, Minist Agr & Rural Affairs China, Kunming, Peoples R China

2.Yunnan Acad Agr Sci, Agr Environm & Resource Res Inst, Key Lab Green Prevent & Control Agr Transboundary, Kunming, Peoples R China

3.Yunnan Lancang Mekong Agr Biosecur Int Sci & Techn, Kunming, Peoples R China

4.Minzu Univ China, Coll Ethnol & Sociol, Beijing, Peoples R China

5.Trinity Western Univ, Dept Biol, Langley, BC, Canada

6.Invas Species Council British Columbia, Williams Lake, BC, Canada

7.Yunnan Univ, Sch Agr, Kunming, Peoples R China

8.Southwest Forestry Univ, Sch Marxism, Kunming, Peoples R China

9.Natl Forestry & Grassland Adm, Southwest Res Ctr Ecocivilizat, Kunming, Peoples R China

关键词: New invasive species; Acmella radicans; Potential distribution; Predictive modeling; MaxEnt; Ecological impact

期刊名称:BMC PLANT BIOLOGY ( 影响因子:5.3; 五年影响因子:5.9 )

ISSN: 1471-2229

年卷期: 2024 年 24 卷 1 期

页码:

收录情况: SCI

摘要: Background Acmella radicans (Jacquin) R.K. Jansen is a new invasive species record for Yunnan Province, China. Native to Central America, it has also been recently recorded invading other parts of Asia. To prevent this weed from becoming a serious issue, an assessment of its ecological impacts and potential distribution is needed. We predicted the potential distribution of A. radicans in China using the MaxEnt model and its ecological impacts on local plant communities and soil nutrients were explored. Results Simulated training using model parameters produced an area under curve value of 0.974, providing a high degree of confidence in model predictions. Environmental variables with the greatest predictive power were precipitation of wettest month, isothermality, topsoil TEB (total exchangeable bases), and precipitation seasonality, with a cumulative contribution of more than 72.70% and a cumulative permutation importance of more than 69.20%. The predicted potential suitable area of A. radicans in China is concentrated in the southern region. Projected areas of A. radicans ranked as high and moderately suitable comprised 5425 and 26,338 km2, accounting for 0.06 and 0.27% of the Chinese mainland area, respectively. Over the 5 years of monitoring, the population density of A. radicans increased while at the same time the population density and importance values of most other plant species declined markedly. Community species richness, diversity, and evenness values significantly declined. Soil organic matter, total N, total P, available N, and available P concentrations decreased significantly with increasing plant cover of A. radicans, whereas pH, total K and available K increased. Conclusion Our study was the first to show that A. radicans is predicted to expand its range in China and may profoundly affect plant communities, species diversity, and the soil environment. Early warning and monitoring of A. radicans must be pursued with greater vigilance in southern China to prevent its further spread.

  • 相关文献
作者其他论文 更多>>